Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nucleic Acids Res ; 46(7): 3498-3516, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29474673

RESUMEN

Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but models suggesting a role for DNA repair have been proposed, in particular the involvement of transcription-coupled nucleotide excision repair (TCNER) that removes transcription-blocking DNA damage from the transcribed strand of actively expressed genes. If the formation of secondary DNA structures that are associated with SSRs were to block RNA polymerase progression, TCNER could be activated, resulting in the removal of the aberrant structure and a concomitant change in the region's length. To test this, TCNER activity in primary human fibroblasts was assessed on defined DNA substrates containing extrahelical DNA loops that lack discernible internal base pairs or DNA stem-loops that contain base pairs within the stem. The results show that both structures impede transcription elongation, but there is no corresponding evidence that nucleotide excision repair (NER) or TCNER operates to remove them.


Asunto(s)
Reparación del ADN/genética , ADN/genética , Repeticiones de Microsatélite/genética , Conformación de Ácido Nucleico , ADN/química , Daño del ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Fibroblastos , Inestabilidad Genómica/genética , Humanos , Transcripción Genética , Expansión de Repetición de Trinucleótido/genética
2.
PLoS One ; 11(5): e0155002, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27186882

RESUMEN

Cadmium is a carcinogenic metal, the mechanisms of which are not fully understood. In this study, human bronchial epithelial cells were transformed with sub-toxic doses of cadmium (0.01, 0.05, and 0.1 µM) and transformed clones were characterized for gene expression changes using RNA-seq, as well as other molecular measurements. 440 genes were upregulated and 47 genes were downregulated in cadmium clones relative to control clones over 1.25-fold. Upregulated genes were associated mostly with gene ontology terms related to embryonic development, immune response, and cell movement, while downregulated genes were associated with RNA metabolism and regulation of transcription. Several embryonic genes were upregulated, including the transcription regulator SATB2. SATB2 is critical for normal skeletal development and has roles in gene expression regulation and chromatin remodeling. Small hairpin RNA knockdown of SATB2 significantly inhibited growth in soft agar, indicating its potential as a driver of metal-induced carcinogenesis. An increase in oxidative stress and autophagy was observed in cadmium clones. In addition, the DNA repair protein O6-methylguanine-DNA-methyltransferase was depleted by transformation with cadmium. MGMT loss caused significant decrease in cell viability after treatment with the alkylating agent temozolomide, demonstrating diminished capacity to repair such damage. Results reveal various mechanisms of cadmium-induced malignant transformation in BEAS-2B cells including upregulation of SATB2, downregulation of MGMT, and increased oxidative stress.


Asunto(s)
Cadmio/administración & dosificación , Carcinógenos/administración & dosificación , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Autofagia/genética , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Bronquios/patología , Moléculas de Adhesión Celular Neuronal/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Supervivencia Celular/genética , Transformación Celular Neoplásica/metabolismo , Daño del ADN/efectos de los fármacos , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Epigénesis Genética , Células Epiteliales/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , Estrés Oxidativo , Fenotipo , Mucosa Respiratoria/patología , Factores de Tiempo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Toxicol Appl Pharmacol ; 293: 30-6, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26780400

RESUMEN

The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation.


Asunto(s)
Movimiento Celular/fisiología , Proliferación Celular/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Factores de Transcripción/metabolismo , Bronquios/citología , Carcinógenos/toxicidad , Línea Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Níquel/toxicidad , ARN Interferente Pequeño/genética , Factores de Transcripción/genética
4.
J Biol Chem ; 291(2): 848-61, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26559971

RESUMEN

DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Transcripción Genética , ADN/metabolismo , Cartilla de ADN/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Vectores Genéticos/metabolismo , Humanos , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Fenotipo , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Moldes Genéticos , Elongación de la Transcripción Genética , Proteína Fluorescente Roja
5.
Toxicol Appl Pharmacol ; 288(3): 399-408, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26314618

RESUMEN

Cadmium (Cd) is a toxic and carcinogenic metal naturally occurring in the Earth's crust. A common route of human exposure is via diet and cadmium accumulates in the liver. The effects of Cd exposure on gene expression in human hepatocellular carcinoma (HepG2) cells were examined in this study. HepG2 cells were acutely-treated with 0.1, 0.5, or 1.0 µM Cd for 24h; or chronically-treated with 0.01, 0.05, or 0.1 µM Cd for three weeks and gene expression analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST Arrays. Acute and chronic exposures significantly altered the expression of 333 and 181 genes, respectively. The genes most upregulated by acute exposure included several metallothioneins. Downregulated genes included the monooxygenase CYP3A7, involved in drug and lipid metabolism. In contrast, CYP3A7 was upregulated by chronic Cd exposure, as was DNAJB9, an anti-apoptotic J protein. Genes downregulated following chronic exposure included the transcriptional regulator early growth response protein 1. Ingenuity Pathway Analysis revealed that the top networks altered by acute exposure were lipid metabolism, small molecule biosynthesis, cell morphology, organization, and development; while top networks altered by chronic exposure were organ morphology, cell cycle, cell signaling, and renal and urological diseases/cancer. Many of the dysregulated genes play important roles in cellular growth, proliferation, and apoptosis, and may be involved in carcinogenesis. In addition to gene expression changes, HepG2 cells treated with cadmium for 24h indicated a reduction in global levels of histone methylation and acetylation that persisted 72 h post-treatment.


Asunto(s)
Cadmio/toxicidad , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Acetilación , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Metilación de ADN , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Células Hep G2 , Histonas/genética , Histonas/metabolismo , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Hepáticas/genética , Análisis por Micromatrices , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADN , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica , Regulación hacia Arriba
6.
Toxicol Appl Pharmacol ; 288(1): 33-9, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26164860

RESUMEN

Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans.


Asunto(s)
Bronquios/efectos de los fármacos , Transformación Celular Neoplásica/inducido químicamente , Células Epiteliales/efectos de los fármacos , Neoplasias Pulmonares/inducido químicamente , Compuestos de Tungsteno/toxicidad , Animales , Bronquios/metabolismo , Bronquios/patología , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Desnudos , Trasplante de Neoplasias , Factores de Tiempo , Carga Tumoral/efectos de los fármacos
7.
Nucleic Acids Res ; 38(22): 8178-87, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20702424

RESUMEN

O(6)-Methylguanine (O(6)-meG), which is produced in DNA following exposure to methylating agents, instructs human RNA polymerase II to mis-insert bases opposite the lesion during transcription. In this study, we examined the effect of O(6)-meG on transcription in human cells and investigated the subsequent effects on protein function following translation of the resulting mRNA. In HEK293 cells, O(6)-meG induced incorporation of uridine or cytidine in nascent RNA opposite the adduct. In cells containing active O(6)-alkylguanine-DNA alkyltransferase (AGT), which repairs O(6)-meG, 3% misincorporation of uridine was observed opposite the lesion. In cells where AGT function was compromised by addition of the AGT inhibitor O(6)-benzylguanine, ∼ 58% of the transcripts contained a uridine misincorporation opposite the lesion. Furthermore, the altered mRNA induced changes to protein function as demonstrated through recovery of functional red fluorescent protein (RFP) from DNA coding for a non-fluorescent variant of RFP. These data show that O(6)-meG is highly mutagenic at the level of transcription in human cells, leading to an altered protein load, especially when AGT is inhibited.


Asunto(s)
Guanina/análogos & derivados , Mutagénesis , Transcripción Genética , Replicación del ADN , Colorantes Fluorescentes/análisis , Guanina/química , Células HEK293 , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Plásmidos/biosíntesis , Plásmidos/química , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...