Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 285: 131536, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34273695

RESUMEN

Waste gas fermentation powered by renewable H2 is reaching kiloton scale. The presence of sulfide, inherent to many waste gases, can cause inhibition, requiring additional gas treatment. In this work, acetogenesis and methanogenesis inhibition by sulfide were studied in a 10-L mixed-culture fermenter, supplied with CO2 and connected with a water electrolysis unit for electricity-powered H2 supply. Three cycles of inhibition (1.3 mM total dissolved sulfide (TDS)) and recovery were applied, then the fermenter was operated at 0.5 mM TDS for 35 days. During operation at 0.5 mM TDS the acetate production rate reached 7.1 ± 1.5 mmol C L-1 d-1. Furthermore, 43.7 ± 15.6% of the electrons, provided as H2, were distributed to acetate and 7.7 ± 4.1% to butyrate, the second most abundant fermentation product. Selectivity of sulfide as inhibitor was demonstrated by a 7 days lag-phase of methanogenesis recovery, compared to 48 h for acetogenesis and by the less than 1% electrons distribution to CH4, under 0.5 mM TDS. The microbial community was dominated by Eubacterium, Proteiniphilum and an unclassified member of the Eggerthellaceae family. The taxonomic diversity of the community decreased and conversely the phenotypic diversity increased, during operation. This work illustrated the scale-up potential of waste gas fermentations, by elucidating the effect of sulfide as a common gas impurity, and by demonstrating continuous, potentially renewable supply of electrons.


Asunto(s)
Ácido Acético , Dióxido de Carbono , Reactores Biológicos , Fermentación , Hidrógeno , Sulfuros
2.
Bioresour Technol ; 314: 123711, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32622275

RESUMEN

Implementation of mainstream partial nitritation/anammox (PN/A) can lead to more sustainable and cost-effective sewage treatment. For mainstream PN/A reactor, an integrated fixed-film activated sludge (IFAS) was operated (26 °C). The effects of floccular aerobic sludge retention time (AerSRTfloc), a novel aeration strategy, and N-loading rate were tested to optimize the operational strategy. The best performance was observed with a low, but sufficient AerSRTfloc (~7d) and continuous aeration with two alternating dissolved oxygen setpoints: 10 min at 0.07-0.13 mg O2 L-1 and 5 min at 0.27-0.43 mg O2 L-1. Nitrogen removal rates were 122 ± 23 mg N L-1 d-1, and removal efficiencies 73 ± 13%. These conditions enabled flocs to act as nitrite sources while the carriers were nitrite sinks, with low abundance of nitrite oxidizing bacteria. The operational strategies in the source-sink framework can serve as a guideline for successful operation of mainstream PN/A reactors.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Reactores Biológicos , Nitritos , Nitrógeno , Oxidación-Reducción
3.
Water Res ; 172: 115462, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31958594

RESUMEN

Anammox, the oxidation of ammonium with nitrite, is a key microbial process in the nitrogen cycle. Under mesophilic conditions (below 40 °C), it is widely implemented to remove nitrogen from wastewaters lacking organic carbon. Despite evidence of the presence of anammox bacteria in high-temperature environments, reports on the cultivation of thermophilic anammox bacteria are limited to a short-term experiment of 2 weeks. This study showcases the adaptation of a mesophilic inoculum to thermophilic conditions, and its characterization. First, an attached growth technology was chosen to obtain the process. In an anoxic fixed-bed biofilm bioreactor (FBBR), a slow linear temperature increase from 38 to over 48 °C (0.05-0.07 °C d-1) was imposed to the community over 220 days, after which the reactor was operated at 48 °C for over 200 days. Maximum total nitrogen removal rates reached up to 0.62 g N L-1 d-1. Given this promising performance, a suspended growth system was tested. The obtained enrichment culture served as inoculum for membrane bioreactors (MBR) operated at 50 °C, reaching a maximum total nitrogen removal rate of 1.7 g N L-1 d-1 after 35 days. The biomass in the MBR had a maximum specific anammox activity of 1.1 ± 0.1 g NH4+-N g-1 VSS d-1, and the growth rate was estimated at 0.075-0.19 d-1. The thermophilic cultures displayed nitrogen stoichiometry ratios typical for mesophilic anammox: 0.93-1.42 g NO2--Nremoved g-1 NH4+-Nremoved and 0.16-0.35 g NO3--Nproduced g-1 NH4+-Nremoved. Amplicon and Sanger sequencing of the 16S rRNA genes revealed a disappearance of the original "Ca. Brocadia" and "Ca. Jettenia" taxa, yielding Planctomycetes members with only 94-95% similarity to "Ca. Brocadia anammoxidans" and "Ca. B. caroliniensis", accounting for 45% of the bacterial FBBR community. The long-term operation of thermophilic anammox reactors and snapshot views on the nitrogen stoichiometry, kinetics and microbial community open up the development path of thermophilic partial nitritation/anammox. A first economic assessment highlighted that treatment of sludge reject water from thermophilic anaerobic digestion of sewage sludge may become attractive.


Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Anaerobiosis , Nitrógeno , Oxidación-Reducción , ARN Ribosómico 16S , Aguas del Alcantarillado , Temperatura
4.
Curr Opin Biotechnol ; 62: 48-57, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31593911

RESUMEN

Microbial electrosynthesis (MES) is an electrochemical process used to drive microbial metabolism for bio-production, such as the reduction of CO2 into industrially relevant organic products as an alternative to current fossil-fuel-derived commodities. After a decade of research on MES from CO2, figures of merit have increased significantly but are plateauing yet far from those expected to allow competitiveness for synthesis of commodity chemicals. Here we discuss the substantial technological shortcomings still associated with MES and evoke possible ways to mitigate them. It appears particularly challenging to obtain both relevant production rates (driven by high current densities) and energy conversion efficiency (i.e. low cell voltage) in microbial-compatible electrolytes. More competitive processes could arise by decoupling effective abiotic electroreductions (e.g. CO2 to CO or ethanol; H2 evolution) with subsequent fermentation processes.


Asunto(s)
Dióxido de Carbono , Electrodos , Fermentación
5.
Sci Rep ; 8(1): 13783, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30214003

RESUMEN

Long-term human Space missions depend on regenerative life support systems (RLSS) to produce food, water and oxygen from waste and metabolic products. Microbial biotechnology is efficient for nitrogen conversion, with nitrate or nitrogen gas as desirable products. A prerequisite to bioreactor operation in Space is the feasibility to reactivate cells exposed to microgravity and radiation. In this study, microorganisms capable of essential nitrogen cycle conversions were sent on a 44-days FOTON-M4 flight to Low Earth Orbit (LEO) and exposed to 10-3-10-4 g (gravitational constant) and 687 ± 170 µGy (Gray) d-1 (20 ± 4 °C), about the double of the radiation prevailing in the International Space Station (ISS). After return to Earth, axenic cultures, defined and reactor communities of ureolytic bacteria, ammonia oxidizing archaea and bacteria, nitrite oxidizing bacteria, denitrifiers and anammox bacteria could all be reactivated. Space exposure generally yielded similar or even higher nitrogen conversion rates as terrestrial preservation at a similar temperature, while terrestrial storage at 4 °C mostly resulted in the highest rates. Refrigerated Space exposure is proposed as a strategy to maximize the reactivation potential. For the first time, the combined potential of ureolysis, nitritation, nitratation, denitrification (nitrate reducing activity) and anammox is demonstrated as key enabler for resource recovery in human Space exploration.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Reactores Biológicos/microbiología , Ciclo del Nitrógeno/fisiología , Vuelo Espacial , Ingravidez , Amoníaco/metabolismo , Archaea/efectos de la radiación , Bacterias/efectos de la radiación , Desnitrificación/fisiología , Nitritos/metabolismo , Oxidación-Reducción , Nave Espacial
6.
Water Res ; 127: 1-10, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28992459

RESUMEN

The implementation of nitritation/denitritation (Nit/DNit) as alternative to nitrification/denitrification (N/DN) is driven by operational cost savings, e.g. 1.0-1.8 EUR/ton slurry treated. However, as for any biological nitrogen removal process, Nit/DNit can emit the potent greenhouse gas nitrous oxide (N2O). Challenges remain in understanding formation mechanisms and in mitigating the emissions, particularly at a low ratio of organic carbon consumption to nitrogen removal (CODrem/Nrem). In this study, the centrate (centrifuge supernatant) from anaerobic co-digestion of pig slurry was treated in a sequencing batch reactor. The process removed approximately 100% of ammonium a satisfactory nitrogen loading rate (0.4 g N/L/d), with minimum nitrite and nitrate in the effluent. Substantial N2O emission (around 17% of the ammonium nitrogen loading) was observed at the baseline operational condition (dissolved oxygen, DO, levels averaged at 0.85 mg O2/L; CODrem/Nrem of 2.8) with ∼68% of the total emission contributed by nitritation. Emissions increased with higher nitrite accumulation and lower organic carbon to nitrogen ratio. Yet, higher DO levels (∼2.2 mg O2/L) lowered the aerobic N2O emission and weakened the dependency on nitrite concentration, suggesting a shift in N2O production pathway. The most effective N2O mitigation strategy combined intermittent patterns of aeration, anoxic feeding and anoxic carbon dosage, decreasing emission by over 99% (down to ∼0.12% of the ammonium nitrogen loading). Without anaerobic digestion, mitigated Nit/DNit decreases the operational carbon footprint with about 80% compared to N/DN. With anaerobic digestion included, about 4 times more carbon is sequestered. In conclusion, the low CODrem/Nrem feature of Nit/DNit no longer offsets its environmental sustainability provided the process is smartly operated.


Asunto(s)
Contaminantes Ambientales/análisis , Nitritos/química , Óxido Nitroso/análisis , Porcinos , Aguas Residuales/química , Compuestos de Amonio/química , Animales , Reactores Biológicos , Carbono/análisis , Contaminantes Ambientales/metabolismo , Nitratos/análisis , Nitrógeno/química , Nitrógeno/metabolismo , Óxido Nitroso/metabolismo , Oxígeno/análisis , Administración de Residuos/métodos
7.
J Biotechnol ; 192 Pt A: 265-7, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25449017

RESUMEN

Anammox bacteria are inhibited by nitrite, which is one of their substrates. By utilizing 2,4 dinitrophenol and carbonyl cyanide m-chlorophenyl hydrazone, two uncouplers of respiration, we demonstrate that nitrite tolerance of anammox cells is strongly dependent on their ability to maintain a proton gradient, which may be the driving force for active nitrite transport system.


Asunto(s)
Amoníaco/metabolismo , Bacterias/metabolismo , Nitritos/metabolismo , 2,4-Dinitrofenol/farmacología , Bacterias/efectos de los fármacos , Hidrazonas/farmacología , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Protones
8.
Water Res ; 65: 170-6, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25108528

RESUMEN

Anaerobic ammonium oxidizing (anammox) bacteria are be inhibited by their terminal electron acceptor, nitrite. Serious nitrite inhibition of the anammox bacteria occurs if the exposure coincides with the absence of the electron donating substrate, ammonium and pH < 7.2. Starvation of biomass occurs during underloading of bioreactors or biomass storage. This work investigated the effect of starvation on the sensitivity of anammox bacteria to nitrite exposure. Batch activity tests were carried out evaluating the response of anammox biomass subjected to different levels of starvation upon exposure to nitrite in the presence and absence of ammonium (active- and resting-cells, respectively). The response of the bacteria was evaluated by measuring the specific anammox activity and the evolution of the ATP content in the biomass over time. The 50% inhibitory concentrations of nitrite in starved- and fresh-resting-cells was 7 mg N L(-1) and 52 mg N L(-1), respectively. By contrast, only moderate nitrite inhibition occurred to starved anammox biomass when exposed to nitrite and ammonium simultaneously. Maximum ATP levels were observed in fresh cells. The ATP content in starved resting cells peaked 2-3 h after addition of NO2(-)(-). The response was hindered in cells starved for long periods. These findings agreed with a bioreactor study in which underloading of anammox biomass (0.10 g N L(-1) d(-1)) decreased its tolerance to a nitrite (only) exposure (101 mg NO2(-)-N L(-1)) and completely disrupted the N removal capacity of the biomass. A similar accumulation of 108 mg NO2(-)-N L(-1) after operation at 0.95 g N L(-1) d(-1) did not cause observable inhibition of the bacteria. The results taken as a whole demonstrate that starved anammox biomass is highly sensitive to nitrite toxicity. An explanation is proposed based on energy requirements to translocate nitrite in the cell.


Asunto(s)
Compuestos de Amonio/metabolismo , Bacterias Anaerobias/metabolismo , Nitritos/metabolismo , Adenosina Trifosfato/metabolismo , Anaerobiosis , Bacterias Anaerobias/citología , Biomasa , Reactores Biológicos/microbiología , Oxidantes , Aguas del Alcantarillado/microbiología
9.
Biotechnol Bioeng ; 111(10): 1949-56, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24771200

RESUMEN

The anaerobic oxidation of ammonium (anammox) uses nitrite as terminal electron acceptor. The nitrite can cause inhibition to the bacteria that catalyze the anammox reaction. The literature shows a great divergence on the levels of NO2 (-) causing inhibition. Moreover, the conditions influencing the resistance of anammox bacteria to NO2 (-) inhibitory effect are not well understood. This work investigated the effect of the pH and the concentration of nitrite on the activity and metabolism of anammox granular sludge under different physiological conditions. Batch activity tests in a range of pH values were carried out in which either actively metabolizing cells or resting cells were exposed to nitrite in the presence or absence of the electron donating substrate ammonium, respectively. The response of the bacteria was evaluated by analyzing the specific anammox activity, the accumulation of nitric oxide, and the evolution of the ATP content in the biomass. Additionally, the effect of the pH on the tolerance of the biomass to single substrate feeding interruptions was evaluated in continuous anammox bioreactors. The results show that the influence of the pH on the NO2 (-) inhibition of anammox bacteria is greater under non-metabolizing conditions than during active metabolism. The exposure of resting cells to NO2 (-) (100 mg N L(-1) ) at pH values below 7.2 caused complete inhibition of the anammox activity. The inhibition was accompanied by accumulation of the intermediate, nitric oxide, in the gas phase. In contrast, just mild inhibition was observed for resting cells exposed to the same NO2 (-) concentration at pH values higher than 7.5 or any of the pH values tested in assays with actively metabolizing cells. ATP initially increased and subsequently decreased in time after resting cells were exposed to NO2 (-) suggesting an active response of the cells to nitrite stress. Furthermore, bioreactors operated at pH lower than 6.8 had greater sensitivity to NO2 (-) during an ammonium feed interruption than a bioreactor operated at pH 7.1. The results suggest that the ability of resting cells to tolerate NO2 (-) inhibition is seriously impeded at mildly acidic pH values; whereas actively metabolizing biomass is resistant to NO2 (-) toxicity over a wide range of pH values.


Asunto(s)
Bacterias Anaerobias/metabolismo , Nitritos/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Aguas del Alcantarillado/microbiología , Adenosina Trifosfato/metabolismo , Anaerobiosis , Biomasa , Reactores Biológicos/microbiología , Concentración de Iones de Hidrógeno , Compuestos de Amonio Cuaternario/análisis , Eliminación de Residuos Líquidos/métodos
10.
Water Res ; 48: 52-60, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24091185

RESUMEN

Anaerobic ammonium oxidizing bacteria (Anammox) are known to be inhibited by their substrate, nitrite. However, the mechanism of inhibition and the physiological conditions under which nitrite impacts the performance of anammox bioreactors are still unknown. This study investigates the role of pre-exposing anammox bacteria to nitrite alone on their subsequent activity and metabolism after ammonium has been added. Batch experiments were carried out with anammox granular biofilm pre-exposed to nitrite over a range of concentrations and durations in the absence of ammonium. The effect of pre-exposure to nitrite alone compared to nitrite simultaneously fed with ammonium was evaluated by measuring the anammox activity and the accumulation of the intermediate, nitric oxide. The results show that the inhibitory effect was more dramatic when bacteria were pre-exposed to nitrite in absence of ammonium, as revealed by the lower activity and the higher accumulation of nitric oxide. The nitrite concentration causing 50% inhibition was 53 and 384 mg N L(-1) in the absence or the presence of ammonium, respectively. The nitrite inhibition was thus 7.2-fold more severe in the absence of ammonium. Biomass exposure to nitrite (25 mg N L(-1)), in absence of ammonium, led to accumulation of nitric oxide. On the other hand when the biomass was exposed to nitrite in presence of ammonium, accumulation of nitric oxide was only observed at much higher nitrite concentrations (500 mg N L(-1)). The inhibitory effect of nitrite in the absence of ammonium was very rapid. The rate of decay of the anammox activity was equivalent to the diffusion rate of nitrite up to 46% of activity loss. The results taken as a whole suggest that nitrite inhibition is more acute when anammox cells are not actively metabolizing. Accumulation of nitric oxide in the headspace most likely indicates disruption of the anammox biochemistry by nitrite inhibition, caused by an interruption of the hydrazine synthesis step.


Asunto(s)
Compuestos de Amonio/química , Nitritos/química , Biopelículas , Bioensayo , Biomasa
11.
Chemosphere ; 91(1): 22-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23245574

RESUMEN

Anaerobic ammonium oxidation (anammox) is an emerging technology for nitrogen removal that provides a more environmentally sustainable and cost effective alternative compared to conventional biological treatment methods. The objective of this study was to investigate the inhibitory impact of anammox substrates, metabolites and common wastewater constituents on the microbial activity of two different anammox enrichment cultures (suspended and granular), both dominated by bacteria from the genus Brocadia. Inhibition was evaluated in batch assays by comparing the N(2) production rates in the absence or presence of each compound supplied in a range of concentrations. The optimal pH was 7.5 and 7.3 for the suspended and granular enrichment cultures, respectively. Among the substrates or products, ammonium and nitrate caused low to moderate inhibition, whereas nitrite caused almost complete inhibition at concentrations higher than 15 mM. The intermediate, hydrazine, either stimulated or caused low inhibition of anammox activity up to 3mM. Of the common constituents in wastewater, hydrogen sulfide was the most severe inhibitor, with 50% inhibitory concentrations (IC(50)) as low as 0.03 mM undissociated H(2)S. Dissolved O(2) showed moderate inhibition (IC(50)=2.3-3.8 mg L(-1)). In contrast, phosphate and salinity (NaCl) posed very low inhibition. The suspended- and granular anammox enrichment cultures had similar patterns of response to the various inhibitory stresses with the exception of phosphate. The findings of this study provide comprehensive insights on the tolerance of the anammox process to a wide variety of potential inhibiting compounds.


Asunto(s)
Compuestos de Amonio Cuaternario/análisis , Aguas Residuales/química , Microbiología del Agua , Contaminantes Químicos del Agua/análisis , Anaerobiosis , Bacterias/metabolismo , Concentración de Iones de Hidrógeno , Compuestos de Amonio Cuaternario/metabolismo , Eliminación de Residuos Líquidos , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA