Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Clin Exp Ophthalmol ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443311

RESUMEN

BACKGROUND: KCNV2-associated retinopathy is an autosomal recessive inherited retinal disease classically named cone dystrophy with supernormal rod response (CDSRR). This study aims to identify the best biomarker for evaluating the condition. METHODS: A retrospective review of eight patients from seven families with genetically confirmed KCNV2-associated retinopathy was performed. The best corrected visual acuity (BCVA), full-field electroretinogram (ffERG), pattern ERG (pERG), fundus imaging: retinal photograph and fundus autofluorescence (FAF), and optical coherence tomography (OCT) were analysed. RESULTS: There was a disproportionate increase in b-wave amplitude with a relatively small light intensity increase, especially between the two dimmest stimuli of DA 0.002 and 0.01 (-2.7 and -2.0 log cd.s/m2 ). The a-wave amplitude was normal. The a-wave peak time was delayed in all stimuli. The b-wave peak time was delayed compared to normal, but the gap tightened as intensity increased. The b:a wave ratio was above or at the upper limit for the reference values. FAF bull's eye maculopathy pattern was prominent and variable foveal disruption on OCT was apparent in all patients. Legal blindness was reached before the age of 25. CONCLUSIONS: We identified three potential electrophysiology biomarkers to assist in evaluating future therapies: the disproportionate b-wave amplitude jump, delayed a-wave and b-wave peak time, and the higher than normal b:a wave ratio. Any of these biomarkers found with photoreceptor ellipsoid zone foveal-perifoveal disruption should prompt consideration for KCNV2 retinopathy. The BCVA natural history data suggests the probable optimum therapeutic window in the first three decades of life.

2.
Sci Rep ; 13(1): 21946, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081924

RESUMEN

Adeno-associated viral (AAV) vector-mediated retinal gene therapy is an active field of both pre-clinical as well as clinical research. As with other gene therapy clinical targets, novel bioengineered AAV variants developed by directed evolution or rational design to possess unique desirable properties, are entering retinal gene therapy translational programs. However, it is becoming increasingly evident that predictive preclinical models are required to develop and functionally validate these novel AAVs prior to clinical studies. To investigate if, and to what extent, primary retinal explant culture could be used for AAV capsid development, this study performed a large high-throughput screen of 51 existing AAV capsids in primary human retina explants and other models of the human retina. Furthermore, we applied transgene expression-based directed evolution to develop novel capsids for more efficient transduction of primary human retina cells and compared the top variants to the strongest existing benchmarks identified in the screening described above. A direct side-by-side comparison of the newly developed capsids in four different in vitro and ex vivo model systems of the human retina allowed us to identify novel AAV variants capable of high transgene expression in primary human retina cells.


Asunto(s)
Cápside , Retina , Humanos , Cápside/metabolismo , Retina/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Terapia Genética , Bioingeniería , Dependovirus/metabolismo , Vectores Genéticos/genética , Transducción Genética
3.
Mol Ther ; 31(12): 3490-3501, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37864333

RESUMEN

Mutations in the PCDH15 gene, encoding protocadherin-15, are among the leading causes of Usher syndrome type 1 (USH1F), and account for up to 12% USH1 cases worldwide. A founder truncating variant of PCDH15 has a ∼2% carrier frequency in Ashkenazi Jews accounting for nearly 60% of their USH1 cases. Although cochlear implants can restore hearing perception in USH1 patients, presently there are no effective treatments for the vision loss due to retinitis pigmentosa. We established a founder allele-specific Pcdh15 knockin mouse model as a platform to ascertain therapeutic strategies. Using a dual-vector approach to circumvent the size limitation of adeno-associated virus, we observed robust expression of exogenous PCDH15 in the retinae of Pcdh15KI mice, sustained recovery of electroretinogram amplitudes and key retinoid oxime, substantially improved light-dependent translocation of phototransduction proteins, and enhanced levels of retinal pigment epithelium-derived enzymes. Thus, our data raise hope and pave the way for future gene therapy trials in USH1F subjects.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Humanos , Ratones , Animales , Síndromes de Usher/genética , Síndromes de Usher/terapia , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Retinitis Pigmentosa/metabolismo , Retina/metabolismo , Mutación , Cadherinas/genética , Cadherinas/metabolismo
4.
Front Cell Dev Biol ; 11: 1224078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601102

RESUMEN

Elucidation of the cellular changes that occur in degenerating photoreceptors of people with inherited retinal diseases (IRDs) has been a focus for many research teams, leading to numerous theories on how these changes affect the cell death process. What is clearly emerging from these studies is that there are common denominators across multiple models of IRD, regardless of the underlying genetic mutation. These common markers could open avenues for broad neuroprotective therapeutics to prevent photoreceptor loss and preserve functional vision. In recent years, the role of epigenetic modifications contributing to the pathology of IRDs has been a particular point of interest, due to many studies noting changes in these epigenetic modifications, which coincide with photoreceptor cell death. This review will discuss the two broad categories of epigenetic changes, DNA methylation and histone modifications, that have received particular attention in IRD models. We will review the altered epigenetic regulatory events that are believed to contribute to cell death in IRDs and discuss the therapeutic potential of targeting these alterations.

5.
Adv Exp Med Biol ; 1415: 347-352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440055

RESUMEN

The retina undergoes compensatory changes in response to progressive photoreceptor loss/dysfunction; however, studies of inherited retinal diseases (IRDs) often lack a temporal connection between gene expression and visual function. Here, we used three mouse models of IRD - Cnga3-/-, Pde6ccpfl1, and Rd1 - to investigate over time the effect of photoreceptor degeneration, particularly cones, on visual function and gene expression. Changes to gene expression include increases in cell survival and cell death genes in Pde6ccpfl1 before significant cell loss, as well as an increase in cone-specific genes in the Rd1 at the peak of rod death. We show that Cnga3-/- and Pde6ccpfl1 mice maintained photopic visual acuity via optomotor responses, despite no recordable cone electroretinogram (ERG), while functional measures and photoreceptors loss were correlated in Rd1 mice. There were also significant changes to oscillatory potentials (OPs) in Cnga3-/- and Pde6ccpfl1, implying an effect on inner retinal cells as a result of cone degeneration. These results indicate a potentially malleable retinal environment following cone degeneration; however, further investigation is needed to elucidate how these changes compensate for the loss of cone function.


Asunto(s)
Degeneración Retiniana , Ratones , Animales , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Retina/metabolismo , Perfilación de la Expresión Génica , Electrorretinografía , Modelos Animales de Enfermedad
6.
Front Mol Neurosci ; 16: 1153934, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465364

RESUMEN

The electroretinogram (ERG) measures the electrical activity of retinal neurons and glial cells in response to a light stimulus. Amongst other techniques, clinicians utilize the ERG to diagnose various eye diseases, including inherited conditions such as cone-rod dystrophy, rod-cone dystrophy, retinitis pigmentosa and Usher syndrome, and to assess overall retinal health. An ERG measures the scotopic and photopic systems separately and mainly consists of an a-wave and a b-wave. The other major components of the dark-adapted ERG response include the oscillatory potentials, c-wave, and d-wave. The dark-adapted a-wave is the initial corneal negative wave that arises from the outer segments of the rod and cone photoreceptors hyperpolarizing in response to a light stimulus. This is followed by the slower, positive, and prolonged b-wave, whose origins remain elusive. Despite a large body of work, there remains controversy around the mechanisms involved in the generation of the b-wave. Several hypotheses attribute the origins of the b-wave to bipolar or Müller glial cells or a dual contribution from both cell types. This review will discuss the current hypothesis for the cellular origins of the dark-adapted ERG, with a focus on the b-wave.

7.
Asia Pac J Ophthalmol (Phila) ; 11(4): 369-379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36041150

RESUMEN

Usher syndrome (USH) is the most common form of deaf-blindness, with an estimated prevalence of 4.4 to 16.6 per 100,000 people worldwide. The most common form of USH is type IIA (USH2A), which is caused by homozygous or compound heterozygous mutations in the USH2A gene and accounts for around half of all USH cases. USH2A patients show moderate to severe hearing loss from birth, with diagnosis of retinitis pigmentosa in the second decade of life and variable vestibular involvement. Although hearing aids or cochlear implants can provide some mitigation of hearing deficits, there are currently no treatments aimed at preventing or restoring vision loss in USH2A patients. In this review, we first provide an overview of the molecular biology of the USH2A gene and its protein isoforms, which include a transmembrane protein (TM usherin) and an extracellular protein (EC usherin). The role of these proteins in the inner ear and retina and their impact on the pathogenesis of USH2A is discussed. We review animal cell-derived and patient cell-derived models currently used in USH2A research and conclude with an overview of potential treatment strategies currently in preclinical development and clinical trials.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Animales , Humanos , Mutación , Retina , Retinitis Pigmentosa/genética , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Síndromes de Usher/terapia
8.
Cell Mol Life Sci ; 79(8): 409, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35810394

RESUMEN

Inherited retinal diseases (IRDs) are a heterogeneous group of blinding disorders, which result in dysfunction or death of the light-sensing cone and rod photoreceptors. Despite individual IRDs (Inherited retinal disease) being rare, collectively, they affect up to 1:2000 people worldwide, causing a significant socioeconomic burden, especially when cone-mediated central vision is affected. This study uses the Pde6ccpfl1 mouse model of achromatopsia, a cone-specific vision loss IRD (Inherited retinal disease), to investigate the potential gene-independent therapeutic benefits of a histone demethylase inhibitor GSK-J4 on cone cell survival. We investigated the effects of GSK-J4 treatment on cone cell survival in vivo and ex vivo and changes in cone-specific gene expression via single-cell RNA sequencing. A single intravitreal GSK-J4 injection led to transcriptional changes in pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, among other key epigenetic pathways, highlighting the complex interplay between methylation and acetylation in healthy and diseased cones. Furthermore, continuous administration of GSK-J4 in retinal explants increased cone survival. Our results suggest that IRD (Inherited retinal disease)-affected cones respond positively to epigenetic modulation of histones, indicating the potential of this approach in developing a broad class of novel therapies to slow cone degeneration.


Asunto(s)
Defectos de la Visión Cromática , Distrofia del Cono , Animales , Defectos de la Visión Cromática/metabolismo , Distrofia del Cono/metabolismo , Modelos Animales de Enfermedad , Histonas/metabolismo , Humanos , Ratones , Células Fotorreceptoras Retinianas Conos/metabolismo
9.
Exp Eye Res ; 219: 109033, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35288107

RESUMEN

Photoreceptor cell transplantation into the mouse retina has been shown to result in the transfer of cytoplasmic material between donor and host photoreceptors. Recently it has been found that this inter-photoreceptor material transfer process is likely to be mediated by nanotube-like structures connecting donor and host photoreceptors. By leveraging cone-specific reporter mice and super-resolution microscopy we provide evidence for the transfer of cytoplasmic material also from endogenous cones to endogenous rod photoreceptors and the existence of nanotube-like cell-cell connections possibly mediating this process in the adult mouse retina, together with preliminary data indicating that horizontal material transfer may also occur in the human retina.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Células Fotorreceptoras Retinianas Bastones , Animales , Mamíferos , Ratones , Retina
10.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35054919

RESUMEN

Inherited retinal diseases (IRDs) are a leading cause of blindness. To date, 260 disease-causing genes have been identified, but there is currently a lack of available and effective treatment options. Cone photoreceptors are responsible for daylight vision but are highly susceptible to disease progression, the loss of cone-mediated vision having the highest impact on the quality of life of IRD patients. Cone degeneration can occur either directly via mutations in cone-specific genes (primary cone death), or indirectly via the primary degeneration of rods followed by subsequent degeneration of cones (secondary cone death). How cones degenerate as a result of pathological mutations remains unclear, hindering the development of effective therapies for IRDs. This review aims to highlight similarities and differences between primary and secondary cone cell death in inherited retinal diseases in order to better define cone death mechanisms and further identify potential treatment options.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Predisposición Genética a la Enfermedad , Células Fotorreceptoras Retinianas Conos/metabolismo , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Animales , Apoptosis/genética , Autofagia/genética , Biomarcadores , Muerte Celular , Estrés del Retículo Endoplásmico , Estudios de Asociación Genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/terapia , Humanos , Estrés Oxidativo , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/terapia , Transducción de Señal
11.
J Cell Mol Med ; 25(21): 10020-10027, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34617687

RESUMEN

Biallelic mutations in the RCBTB1 gene cause retinal dystrophy. Here, we characterized the effects of RCBTB1 gene deficiency in retinal pigment epithelial (RPE) cells derived from a patient with RCBTB1-associated retinopathy and restored RCBTB1 expression in these cells using adeno-associated viral (AAV) vectors. Induced pluripotent stem cells derived from a patient with compound heterozygous RCBTB1 mutations (c.170delG and c.707delA) and healthy control subjects were differentiated into RPE cells. RPE cells were treated with AAV vectors carrying a RCBTB1 transgene. Patient-derived RPE cells showed reduced expression of RCBTB1. Expression of NFE2L2 showed a non-significant reduction in patient RPE cells compared with controls, while expression of its target genes (RXRA, IDH1 and SLC25A25) was significantly reduced. Trans-epithelial electrical resistance, surface microvillus densities and primary cilium lengths were reduced in patient-derived RPE cells, compared with controls. Treatment of patient RPE with AAV vectors significantly increased RCBTB1, NFE2L2 and RXRA expression and cilium lengths. Our study provides the first report examining the phenotype of RPE cells derived from a patient with RCBTB1-associated retinopathy. Furthermore, treatment of patient-derived RPE with AAV-RCBTB1 vectors corrected deficits in gene expression and RPE ultrastructure, supporting the use of gene replacement therapy for treating this inherited retinal disease.


Asunto(s)
Cilios/metabolismo , Expresión Génica , Terapia Genética , Factores de Intercambio de Guanina Nucleótido/genética , Epitelio Pigmentado de la Retina/metabolismo , Transgenes , Diferenciación Celular , Células Cultivadas , Cilios/ultraestructura , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Epitelio Pigmentado de la Retina/ultraestructura , Transducción Genética
12.
Pflugers Arch ; 473(9): 1455-1468, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34255151

RESUMEN

Light activation of the classical light-sensing retinal neurons, the photoreceptors, results in a graded change in membrane potential that ultimately leads to a reduction in neurotransmitter release to the post-synaptic retinal neurons. Photoreceptors show striking powers of adaptation, and for visual processing to function optimally, they must adjust their gain to remain responsive to different levels of ambient light intensity. The presence of a tightly controlled balance of inward and outward currents modulated by several different types of ion channels is what gives photoreceptors their remarkably dynamic operating range. Part of the resetting and modulation of this operating range is controlled by potassium and calcium voltage-gated channels, which are involved in setting the dark resting potential and synapse signal processing, respectively. Their essential contribution to visual processing is further confirmed in patients suffering from cone dystrophy with supernormal rod response (CDSRR) and congenital stationary night blindness type 2 (CSNB2), both conditions that lead to irreversible vision loss. This review will discuss these two types of voltage-gated ion channels present in photoreceptors, focussing on their structure and physiology, and their role in visual processing. It will also discuss the use and benefits of knockout mouse models to further study the function of these channels and what routes to potential treatments could be applied for CDSRR and CSNB2.


Asunto(s)
Canales de Calcio/metabolismo , Distrofia del Cono/metabolismo , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Miopía/metabolismo , Ceguera Nocturna/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Canales de Calcio/genética , Distrofia del Cono/genética , Enfermedades Hereditarias del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Miopía/genética , Ceguera Nocturna/genética , Canales de Potasio con Entrada de Voltaje/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo
13.
Int J Mol Sci ; 22(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063002

RESUMEN

Cone Dystrophy with Supernormal Rod Response (CDSRR) is a rare autosomal recessive disorder leading to severe visual impairment in humans, but little is known about its unique pathophysiology. We have previously shown that CDSRR is caused by mutations in the KCNV2 (Potassium Voltage-Gated Channel Modifier Subfamily V Member 2) gene encoding the Kv8.2 subunit, a modulatory subunit of voltage-gated potassium (Kv) channels. In a recent study, we validated a novel mouse model of Kv8.2 deficiency at a late stage of the disease and showed that it replicates the human electroretinogram (ERG) phenotype. In this current study, we focused our investigation on young adult retinas to look for early markers of disease and evaluate their effect on retinal morphology, electrophysiology and immune response in both the Kv8.2 knockout (KO) mouse and in the Kv2.1 KO mouse, the obligate partner of Kv8.2 in functional retinal Kv channels. By evaluating the severity of retinal dystrophy in these KO models, we demonstrated that retinas of Kv KO mice have significantly higher apoptotic cells, a thinner outer nuclear cell layer and increased activated microglia cells in the subretinal space. Our results indicate that in the murine retina, the loss of Kv8.2 subunits contributes to early cellular and physiological changes leading to retinal dysfunction. These results could have potential implications in the early management of CDSRR despite its relatively nonprogressive nature in humans.


Asunto(s)
Envejecimiento/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Subunidades de Proteína/metabolismo , Retina/citología , Retina/metabolismo , Canales de Potasio Shab/metabolismo , Animales , Muerte Celular , Electrorretinografía , Gliosis/patología , Inmunidad , Ratones Noqueados , Microglía/patología , Visión Nocturna , Retina/fisiología
14.
BioDrugs ; 34(6): 763-781, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33136237

RESUMEN

Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been significant advances in basic research findings as well as translational studies, culminating in an increasing number of clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of Luxturna® (voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing in the same therapeutic space.


Asunto(s)
Dependovirus/genética , Amaurosis Congénita de Leber , Degeneración Retiniana , Terapia Genética , Vectores Genéticos/genética , Humanos , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/terapia , Degeneración Retiniana/genética , Degeneración Retiniana/terapia
15.
Transl Vis Sci Technol ; 9(9): 28, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32879784

RESUMEN

Purpose: To validate the application of a known transgenic mouse line with green fluorescent cones (Chrnb4.EGFP) to study cone photoreceptor biology and function in health and disease. Methods: Chrnb4.EGFP retinas containing GFP+ cones were compared with retinas without the GFP transgene via immunohistochemistry, quantitative real-time polymerase chain reaction, electroretinograms, and flow cytometry. The Chrnb4.EGFP line was backcrossed to the mouse models of cone degeneration, Pde6ccpfl1 and Gnat2cpfl3 , generating the new lines Gnat2.GFP and Pde6c.GFP, which were also studied as described. Results: GFP expression spanned the length of the cone cell in the Chrnb4.EGFP line, as well as in the novel Gnat2.GFP and Pde6c.GFP lines. The effect of GFP expression showed no significant changes to outer nuclear layer cell death, cone-specific gene expression, and immune response activation. A temporal decrease in GFP expression over time was observed, but GFP fluorescence was still detected through flow cytometry as late as 6 months. Furthermore, a functional analysis of photopic and scotopic electroretinogram responses of the Chrnb4 mouse showed no significant difference between GFP- and GFP+ mice, whereas electroretinogram recordings for the Pde6c.GFP and Gnat2.GFP lines matched previous reports from the original lines. Conclusions: This study demonstrates that the Chrnb4.EGFP mouse can be a powerful tool to overcome the limitations of studying cone biology, including the use of this line to study different types of cone degeneration. Translational Relevance: This work validates research tools that could potentially offer more reliable preclinical data in the development of treatments for cone-mediated vision loss conditions, shortening the gap to clinical translation.


Asunto(s)
Receptores Nicotínicos , Degeneración Retiniana , Animales , Electrorretinografía , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso , Retina , Células Fotorreceptoras Retinianas Conos , Degeneración Retiniana/genética
16.
Front Cell Neurosci ; 14: 183, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733204

RESUMEN

Usher syndrome is a genetic disorder causing neurosensory hearing loss and blindness from retinitis pigmentosa (RP). Adaptive techniques such as braille, digital and optical magnifiers, mobility training, cochlear implants, or other assistive listening devices are indispensable for reducing disability. However, there is currently no treatment to reduce or arrest sensory cell degeneration. There are several classes of treatments for Usher syndrome being investigated. The present article reviews the progress this research has made towards delivering commercial options for patients with Usher syndrome.

17.
Clin Exp Ophthalmol ; 48(8): 1043-1056, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32710488

RESUMEN

Age-related macular degeneration (AMD) is a progressive degenerative disease that is the leading cause of vision loss in the elderly population. Degeneration/dysregulation of the retinal pigment epithelium (RPE), a supportive monolayer of cells underlying the photoreceptors, is commonly seen in patients with AMD. While treatment exists for the neovascular/wet form of AMD, there is currently no cure for the non-exudative/dry form of AMD, making it imperative to understand the pathogenesis of this disease. Although our understanding of the aetiology of AMD has increased over the years, the underlying disease mechanism has not yet been identified, mainly due to the multifactorial nature of this disease. Herein, we review some of the commonly proposed degeneration pathways of RPE cells and their role in the pathogenesis of AMD; including activation of the complement cascade, oxidative stress-induced cell death mechanisms, dysfunctional mitochondria and the role of crystallins in AMD disease progression.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Anciano , Muerte Celular , Humanos , Degeneración Macular/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Epitelio Pigmentado de la Retina/metabolismo
18.
Adv Exp Med Biol ; 1185: 489-493, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884659

RESUMEN

High visual acuity and the ability to identify colours is solely dependent upon healthy cone photoreceptors in the retina. Little is known about cone migration mechanisms during postmitotic retinal maturation which, if it occurs erroneously, can result in non-functional cells and altered vision. This review provides an overview of neuronal and cone somal migration mechanisms and the potential molecular partners and nuclear structures driving this process. Furthermore, it will also review foveal formation and how that differs from peripheral cone migration in the human retina.


Asunto(s)
Movimiento Celular , Retina/citología , Células Fotorreceptoras Retinianas Conos/citología , Animales , Fóvea Central , Humanos , Visión Ocular , Agudeza Visual
19.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820446

RESUMEN

Mutations in the KCNV2 gene, which encodes the voltage-gated K+ channel protein Kv8.2, cause a distinctive form of cone dystrophy with a supernormal rod response (CDSRR). Kv8.2 channel subunits only form functional channels when combined in a heterotetramer with Kv2.1 subunits encoded by the KCNB1 gene. The CDSRR disease phenotype indicates that photoreceptor adaptation is disrupted. The electroretinogram (ERG) response of affected individuals shows depressed rod and cone activity, but what distinguishes this disease is the supernormal rod response to a bright flash of light. Here, we have utilized knock-out mutations of both genes in the mouse to study the pathophysiology of CDSRR. The Kv8.2 knock-out (KO) mice show many similarities to the human disorder, including a depressed a-wave and an elevated b-wave response with bright light stimulation. Optical coherence tomography (OCT) imaging and immunohistochemistry indicate that the changes in six-month-old Kv8.2 KO retinae are largely limited to the outer nuclear layer (ONL), while outer segments appear intact. In addition, there is a significant increase in TUNEL-positive cells throughout the retina. The Kv2.1 KO and double KO mice also show a severely depressed a-wave, but the elevated b-wave response is absent. Interestingly, in all three KO genotypes, the c-wave is totally absent. The differential response shown here of these KO lines, that either possess homomeric channels or lack channels completely, has provided further insights into the role of K+ channels in the generation of the a-, b-, and c-wave components of the ERG.


Asunto(s)
Distrofia del Cono/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Retina/metabolismo , Canales de Potasio Shab/metabolismo , Animales , Distrofia del Cono/diagnóstico por imagen , Distrofia del Cono/patología , Femenino , Técnicas de Inactivación de Genes , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Canales de Potasio con Entrada de Voltaje/genética , Retina/diagnóstico por imagen , Retina/patología , Canales de Potasio Shab/genética , Transmisión Sináptica , Visión Ocular/fisiología
20.
Hum Gene Ther ; 29(7): 771-784, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29325457

RESUMEN

Gene therapy is a promising approach in the treatment of inherited and common complex disorders of the retina. Preclinical and clinical studies have validated the use of adeno-associated viral vectors (AAV) as a safe and efficient delivery vehicle for gene transfer. Retinal pigment epithelium and rods-and to a lesser extent, cone photoreceptors-can be efficiently targeted with AAV. Other retinal cell types however are more challenging targets. The aim of this study was to characterize the transduction profile and efficiency of in silico designed, synthetic Anc80 AAVs for retinal gene transfer. Three Anc80 variants were evaluated for retinal targeting in mice and primates following subretinal delivery. In the murine retina Anc80L65 demonstrated high level of retinal pigment epithelium and photoreceptor targeting with comparable cone photoreceptor affinity compared to other AAVs. Remarkably, Anc80L65 enhanced transduction kinetics with visible expression as early as day 1 and steady state mRNA levels at day 3. Inner retinal tropism of Anc80 variants demonstrated distinct transduction patterns of Müller glia, retinal ganglion cells and inner nuclear layer neurons. Finally, murine findings with Anc80L65 qualitatively translated to the Rhesus macaque in terms of cell targets, levels and onset of expression. Our findings support the use of Anc80L65 for therapeutic subretinal gene delivery.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Retina/metabolismo , Enfermedades de la Retina/terapia , Animales , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Humanos , Macaca mulatta , Ratones , Retina/efectos de los fármacos , Retina/patología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Enfermedades de la Retina/genética , Enfermedades de la Retina/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...