Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Clin Ultrasound ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760954

RESUMEN

Constriction of the fetal ductus arteriosus is a condition that narrows the ductus arteriosus and can lead to death, so the importance of prior diagnosis. Citronella, due to its anti-inflammatory properties, should be avoided during pregnancy as it may cause constriction of the fetal duct.

2.
Alcohol Clin Exp Res (Hoboken) ; 48(3): 478-487, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38378262

RESUMEN

BACKGROUND: Alcohol withdrawal-induced hyperalgesia (AWH) is characterized as an increased pain sensitivity observed after cessation of chronic alcohol use. Alcohol withdrawal-induced hyperalgesia can contribute to the negative affective state associated with abstinence and can increase susceptibility to relapse. We aimed to characterize pain sensitivity in mice during withdrawal from two different models of alcohol exposure: chronic drinking in the dark (DID) and the Lieber-DeCarli liquid diet. We also investigated whether treatment with a histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), could ameliorate AWH in mice treated with the Lieber-DeCarli diet. METHODS: Male and female C57BL/6J mice were used for these studies. In the DID model, mice received bottles of 20% ethanol or water during the dark cycle for 4 h per day on four consecutive days per week for 6 weeks. Peripheral mechanical sensitivity was measured weekly the morning of Day 5 using von Frey filaments. In the Lieber-DeCarli model, mice received ethanol (5% v/v) or control liquid diet for 10 days, along with a single binge ethanol gavage (5 g/kg) or control gavage, respectively, on Day 10. Peripheral mechanical sensitivity was measured during the liquid diet administration and at 24 and 72 h into ethanol withdrawal. An independent group of mice that received the Lieber-DeCarli diet were administered SAHA (50 mg/kg, i.p.) during withdrawal. RESULTS: Male mice exhibited mechanical hypersensitivity after consuming ethanol for 5 weeks in the DID procedure. In the Lieber-DeCarli model, ethanol withdrawal led to hyperalgesia in both sexes. Suberoylanilide hydroxamic acid treatment during withdrawal from the ethanol liquid diet alleviated AWH. CONCLUSIONS: These results demonstrate AWH in mice after chronic binge drinking in males and after Lieber-DeCarli liquid diet administration in both sexes. Like previous findings in rats, HDAC inhibition reduced AWH in mice, suggesting that epigenetic mechanisms are involved in AWH.

3.
J Neural Transm (Vienna) ; 131(5): 495-503, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38396082

RESUMEN

Alternative splicing is a co-transcriptional process that significantly contributes to the molecular landscape of the cell. It plays a multifaceted role in shaping gene transcription, protein diversity, and functional adaptability in response to environmental cues. Recent studies demonstrate that drugs of abuse have a profound impact on alternative splicing patterns within different brain regions. Drugs like alcohol and cocaine modify the expression of genes responsible for encoding splicing factors, thereby influencing alternative splicing of crucial genes involved in neurotransmission, neurogenesis, and neuroinflammation. Notable examples of these alterations include alcohol-induced changes in splicing factors such as HSPA6 and PCBP1, as well as cocaine's impact on PTBP1 and SRSF11. Beyond the immediate effects of drug exposure, recent research has shed light on the role of alternative splicing in contributing to the risk of substance use disorders (SUDs). This is exemplified by exon skipping events in key genes like ELOVL7, which can elevate the risk of alcohol use disorder. Lastly, drugs of abuse can induce splicing alterations through epigenetic modifications. For example, cocaine exposure leads to alterations in levels of trimethylated lysine 36 of histone H3, which exhibits a robust association with alternative splicing and serves as a reliable predictor for exon exclusion. In summary, alternative splicing has emerged as a critical player in the complex interplay between drugs of abuse and the brain, offering insights into the molecular underpinnings of SUDs.


Asunto(s)
Encéfalo , Trastornos Relacionados con Sustancias , Humanos , Trastornos Relacionados con Sustancias/genética , Trastornos Relacionados con Sustancias/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Animales , Empalme Alternativo , Empalme del ARN/efectos de los fármacos
4.
Life Sci ; 337: 122353, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104862

RESUMEN

AIMS: Sepsis-associated encephalopathy (SAE) is a common complication that increases mortality and leads to long-term cognitive impairment in sepsis survivors. However, no specific or effective therapy has been identified for this complication. Piperine is an alkaloid known for its anti-inflammatory, antioxidant, and neuroprotective properties, which are important characteristics for treatment of SAE. The objective of this study was to evaluate the neuroprotective effect of piperine on SAE in C57BL/6 mice that underwent cecum ligation and perforation surgery (CLP). MAIN METHODS: C57BL/6 male mice were randomly assigned to groups that underwent SHAM surgery or CLP. Mice in the CLP group were treated with piperine at doses of 20 or 40 mg/kg for short- (5 days) or long-term (10 days) periods after CLP. KEY FINDINGS: Our results revealed that untreated septic animals exhibited increased concentrations of IL-6, TNF, VEGF, MMP-9, TBARS, and NLRP3, and decreased levels of BDNF, sulfhydryl groups, and catalase in the short term. Additionally, the levels of carbonylated proteins and degenerated neuronal cells were increased at both time points. Furthermore, short-term and visuospatial memories were impaired. Piperine treatment reduced MMP-9 activity in the short term and decreased the levels of carbonylated proteins and degenerated neuronal cells in the long term. It also lowered IL-6 and TBARS levels at both time points evaluated. Moreover, piperine increased short-term catalase and long-term BDNF factor levels and improved memory at both time points. SIGNIFICANCE: In conclusion, our data demonstrate that piperine exerts a neuroprotective effect on SAE in animals that have undergone CLP.


Asunto(s)
Alcaloides , Fármacos Neuroprotectores , Encefalopatía Asociada a la Sepsis , Masculino , Ratones , Animales , Encefalopatía Asociada a la Sepsis/complicaciones , Catalasa , Metaloproteinasa 9 de la Matriz , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Sustancias Reactivas al Ácido Tiobarbitúrico , Factor Neurotrófico Derivado del Encéfalo , Interleucina-6 , Ratones Endogámicos C57BL , Alcaloides/farmacología , Alcaloides/uso terapéutico
5.
Behav Brain Res ; 461: 114835, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38151185

RESUMEN

Two inbred strains, Lewis (LEW) and Spontaneously Hypertensive Rats (SHR), are well-known for their contrasting behavior related to anxiety/emotionality. Studies with these two strains led to the discovery of the Quantitative Trait Loci (QTL) on chromosome 4 (Anxrr16). To better understand the influences of this genomic region, the congenic rat strain SLA16 (SHR.LEW-Anxrr16) was developed. SLA16 rats present higher hyperactivity/impulsivity, deficits in learning and memory, and lower basal blood pressure than the SHR strain, even though genetic differences between them are only in chromosome 4. Thus, the present study proposed the alpha-synuclein and the dopaminergic system as candidates to explain the differential behavior of SHR and SLA16 strains. To accomplish this, beyond the behavioral analysis, we performed (I) the Snca gene expression and (II) quantification of the alpha-synuclein protein in the hippocampus (HPC), prefrontal cortex (PFC), and striatum (STR) of SHR and SLA16 strains; (III) sequencing of the 3'UTR of the Snca gene; and (IV) evaluation of miRNA binding in the 3'UTR site. A Single Nucleotide Polymorphism (SNP) was identified in the 3'UTR of the Snca gene, which exhibited upregulation in the HPC of SHR compared to SLA16 females. Alpha-synuclein protein was higher in the HPC of SHR males compared to SLA16 males. The results of this work suggested that differences in alpha-synuclein HPC content could be influenced by miRNA regulation and associated with behavioral differences between SHR and SLA16 animals.


Asunto(s)
MicroARNs , alfa-Sinucleína , Animales , Femenino , Masculino , Ratas , Regiones no Traducidas 3' , alfa-Sinucleína/genética , Hipocampo , Ratas Endogámicas Lew , Ratas Endogámicas SHR
6.
Healthcare (Basel) ; 11(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37957971

RESUMEN

Congenital heart disease (CHD) is the leading cause of death from malformations in the first year of life and carries a significant burden to the family when the diagnosis is made in the prenatal period. We recognize the significance of family counseling following a fetal CHD diagnosis. However, we have observed that most research focuses on assessing the emotional state of family members rather than examining the counseling process itself. The objective of this study was to identify and summarize the findings in the literature on family counseling in cases of diagnosis of CHD during pregnancy, demonstrating gaps and suggesting future research on this topic. Eight databases were searched to review the literature on family counseling in cases of CHD diagnosis during pregnancy. A systematic search was conducted from September to October 2022. The descriptors were "congenital heart disease", "fetal heart", and "family counseling". The inclusion criteria were studies on counseling family members who received a diagnosis of CHD in the fetus (family counseling was defined as any health professional who advises mothers and fathers on the diagnosis of CHD during the gestational period), how the news is expressed to family members (including an explanation of CHD and questions about management and prognosis), empirical and qualitative studies, quantitative studies, no publication deadline, and any language. Out of the initial search of 3719 reports, 21 articles were included. Most were cross-sectional (11) and qualitative (9) studies, and all were from developed countries. The findings in the literature address the difficulties in effectively conducting family counseling, the strengths of family counseling to be effective, opportunities to generate effective counseling, and the main challenges in family counseling.

7.
Antibiotics (Basel) ; 12(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37760711

RESUMEN

Chlorhexidine is the most commonly used anti-infective drug in dentistry. To treat infected void areas, a drug-loaded material that swells to fill the void and releases the drug slowly is needed. This study investigated the encapsulation and release of chlorhexidine from cellulose acetate nanofibers for use as an antibacterial treatment for dental bacterial infections by oral bacteria Streptococcus mutans and Enterococcus faecalis. This study used a commercial electrospinning machine to finely control the manufacture of thin, flexible, chlorhexidine-loaded cellulose acetate nanofiber mats with very-small-diameter fibers (measured using SEM). Water absorption was measured gravimetrically, drug release was analyzed by absorbance at 254 nm, and antibiotic effects were measured by halo analysis in agar. Slow electrospinning at lower voltage (14 kV), short target distance (14 cm), slow traverse and rotation, and syringe injection speeds with controlled humidity and temperature allowed for the manufacture of strong, thin films with evenly cross-meshed, uniform low-diameter nanofibers (640 nm) that were flexible and absorbed over 600% in water. Chlorhexidine was encapsulated efficiently and released in a controlled manner. All formulations killed both bacteria and may be used to fill infected voids by swelling for intimate contact with surfaces and hold the drug in the swollen matrix for effective bacterial killing in dental settings.

8.
Mol Psychiatry ; 28(10): 4215-4224, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37537282

RESUMEN

We previously discovered using transcriptomics that rats undergoing withdrawal after chronic ethanol exposure had increased expression of several genes encoding RNA splicing factors in the hippocampus. Here, we examined RNA splicing in the rat hippocampus during withdrawal from chronic ethanol exposure and in postmortem hippocampus of human subjects diagnosed with alcohol use disorder (AUD). We found that expression of the gene encoding the splicing factor, poly r(C) binding protein 1 (PCBP1), was elevated in the hippocampus of rats during withdrawal after chronic ethanol exposure and AUD subjects. We next analyzed the rat RNA-Seq data for differentially expressed (DE) exon junctions. One gene, Hapln2, had increased usage of a novel 3' splice site in exon 4 during withdrawal. This splice site was conserved in human HAPLN2 and was used more frequently in the hippocampus of AUD compared to control subjects. To establish a functional role for PCBP1 in HAPLN2 splicing, we performed RNA immunoprecipitation (RIP) with a PCBP1 antibody in rat and human hippocampus, which showed enriched PCBP1 association near the HAPLN2 exon 4 3' splice site in the hippocampus of rats during ethanol withdrawal and AUD subjects. Our results indicate a conserved role for the splicing factor PCBP1 in aberrant splicing of HAPLN2 after chronic ethanol exposure. As the HAPLN2 gene encodes an extracellular matrix protein involved in nerve conduction velocity, use of this alternative splice site is predicted to result in loss of protein function that could negatively impact hippocampal function in AUD.


Asunto(s)
Alcoholismo , Sitios de Empalme de ARN , Humanos , Ratas , Animales , Empalme del ARN/genética , Etanol/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Alcoholismo/genética , Alcoholismo/metabolismo , Hipocampo/metabolismo , Empalme Alternativo/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Aquat Toxicol ; 260: 106566, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37196509

RESUMEN

Pesticide contamination in water resources is a global threat. Although usually found at low concentrations, pesticides raise considerable toxicological concerns, mainly when mixtures are considered. The occurrence of 22 pesticides (2,4 D, alachlor, aldicarb, aldrin, atrazine, carbendazim, carbofuran, chlordane, chlorpyrifos, DDT, diuron, glyphosate, lindane, mancozeb, methamidophos, metolachlor, molinate, profenofos, simazine, tebuconazole, terbufos, and trifluralin) was investigated, through consolidated database information, in surface freshwaters of Brazil. Moreover, scenarios of environmental risk assessment considering isolated compounds and mixtures were performed, as well as a meta-analytic approach for toxicity purposes. Pesticides in freshwater have been reported from 719 cities (12.9% of Brazilian cities), where 179 (3.2%) showed pesticide occurrence above the limit of detection or quantification. Considering cities with more than five quantified, 16 cities were prone to environmental risks considering individual risks. However, the number increased to 117 cities when the pesticide mixture was considered. The mixture risk was driven by atrazine, chlorpyrifos, and DDT. The national maximum acceptable concentrations (MAC) for nearly all pesticides are higher than the predicted no-effect concentration (PNEC) for the species evaluated, except aldrin. Our results show the need to consider mixtures in the environmental risk assessment to avoid underestimation and review MAC to protect aquatic ecosystems. The results presented here may guide the revision of the national environmental legislation to ensure the protection of Brazilian aquatic ecosystems.


Asunto(s)
Atrazina , Cloropirifos , Plaguicidas , Contaminantes Químicos del Agua , Plaguicidas/toxicidad , Plaguicidas/análisis , Brasil , Ecosistema , Aldrín , DDT , Contaminantes Químicos del Agua/toxicidad , Agua Dulce , Medición de Riesgo , Monitoreo del Ambiente/métodos
11.
Front Psychiatry ; 14: 1122423, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926460

RESUMEN

Compulsive alcohol drinking is a key symptom of alcohol use disorder (AUD) that is particularly resistant to treatment. An understanding of the biological factors that underly compulsive drinking will allow for the development of new therapeutic targets for AUD. One animal model of compulsive alcohol drinking involves the addition of bitter-tasting quinine to an ethanol solution and measuring the willingness of the animal to consume ethanol despite the aversive taste. Previous studies have demonstrated that this type of aversion-resistant drinking is modulated in the insular cortex of male mice by specialized condensed extracellular matrix known as perineuronal nets (PNNs), which form a lattice-like structure around parvalbumin-expressing neurons in the cortex. Several laboratories have shown that female mice exhibit higher levels of aversion-resistant ethanol intake, but the role of PNNs in females in this behavior has not been examined. Here we compared PNNs in the insula of male and female mice and determined if disrupting PNNs in female mice would alter aversion-resistant ethanol intake. PNNs were visualized in the insula by fluorescent labeling with Wisteria floribunda agglutinin (WFA) and disrupted in the insula by microinjecting chondroitinase ABC, an enzyme that digests the chondroitin sulfate glycosaminoglycan component of PNNs. Mice were tested for aversion-resistant ethanol consumption by the addition of sequentially increasing concentrations of quinine to the ethanol in a two-bottle choice drinking in the dark procedure. PNN staining intensity was higher in the insula of female compared to male mice, suggesting that PNNs in females might contribute to elevated aversion-resistant drinking. However, disruption of PNNs had limited effect on aversion-resistant drinking in females. In addition, activation of the insula during aversion-resistant drinking, as measured by c-fos immunohistochemistry, was lower in female mice than in males. Taken together, these results suggest that neural mechanisms underlying aversion-resistant ethanol consumption differ in males and females.

12.
bioRxiv ; 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36747687

RESUMEN

Compulsive alcohol drinking is a key symptom of alcohol use disorder (AUD) that is particularly resistant to treatment. An understanding of the biological factors that underly compulsive drinking will allow for the development of new therapeutic targets for AUD. One animal model of compulsive alcohol drinking involves the addition of bitter-tasting quinine to an ethanol solution and measuring the willingness of the animal to consume ethanol despite the aversive taste. Previous studies have demonstrated that this type of aversion-resistant drinking is modulated in the insular cortex of male mice by specialized condensed extracellular matrix known as perineuronal nets (PNNs), which form a lattice-like structure around parvalbumin-expressing neurons in the cortex. Several laboratories have shown that female mice exhibit higher levels of aversion-resistant ethanol intake but the role of PNNs in females in this behavior has not been examined. Here we compared PNNs in the insula of male and female mice and determined if disrupting PNNs in female mice would alter aversion-resistant ethanol intake. PNNs were visualized in the insula by fluorescent labeling with Wisteria floribunda agglutinin (WFA) and disrupted in the insula by microinjecting chondroitinase ABC, an enzyme that digests the chondroitin sulfate glycosaminoglycan component of PNNs. Mice were tested for aversion-resistant ethanol consumption by the addition of sequentially increasing concentrations of quinine to the ethanol in a two-bottle choice drinking in the dark procedure. PNN staining intensity was higher in the insula of female compared to male mice, suggesting that PNNs in females might contribute to elevated aversion-resistant drinking. However, disruption of PNNs had limited effect on aversion-resistant drinking in females. In addition, activation of the insula during aversion-resistant drinking, as measured by c-fos immunohistochemistry, was lower in female mice than in males. Taken together, these results suggest that neural mechanisms underlying aversion-resistant ethanol consumption differ in males and females.

15.
Arch Physiol Biochem ; : 1-15, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36328030

RESUMEN

CONTEXT: The role of silymarin in hepatic lipid dysfunction and its possible mechanisms of action were investigated. OBJECTIVE: To evaluate the effects of silymarin on hepatic and metabolic profiles in mice fed with 30% fructose for 8 weeks. METHODS: We evaluated the antioxidant profile of silymarin; mice consumed 30% fructose and were treated with silymarin (120 mg/kg/day or 240 mg/kg/day). We performed biochemical, redox status, and histopathological assays. RT-qPCR was performed to detect ACC-1, ACC-2, FAS, and CS expression, and western blotting to detect PGC-1α levels. RESULTS: Silymarin contains high levels of phenolic compounds and flavonoids and exhibited significant antioxidant capacity in vitro. In vivo, the fructose-fed groups showed increased levels of AST, ALT, SOD/CAT, TBARS, hepatic TG, and cholesterol, as well as hypertriglyceridaemia, hypercholesterolaemia, and increased ACC-1 and FAS. Silymarin treatment reduced these parameters and increased mRNA levels and activity of hepatic citrate synthase. CONCLUSIONS: These results suggest that silymarin reduces worsening of NAFLD.

16.
Mol Psychiatry ; 27(9): 3875-3884, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35705636

RESUMEN

Chronic heavy alcohol consumption is associated with increased mortality and morbidity and often leads to premature aging; however, the mechanisms of alcohol-associated cellular aging are not well understood. In this study, we used DNA methylation derived telomere length (DNAmTL) as a novel approach to investigate the role of alcohol use on the aging process. DNAmTL was estimated by 140 cytosine phosphate guanines (CpG) sites in 372 individuals with alcohol use disorder (AUD) and 243 healthy controls (HC) and assessed using various endophenotypes and clinical biomarkers. Validation in an independent sample of DNAmTL on alcohol consumption was performed (N = 4219). Exploratory genome-wide association studies (GWAS) on DNAmTL were also performed to identify genetic variants contributing to DNAmTL shortening. Top GWAS findings were analyzed using in-silico expression quantitative trait loci analyses and related to structural MRI hippocampus volumes of individuals with AUD. DNAmTL was 0.11-kilobases shorter per year in AUD compared to HC after adjustment for age, sex, race, and blood cell composition (p = 4.0 × 10-12). This association was partially attenuated but remained significant after additionally adjusting for BMI, and smoking status (0.06 kilobases shorter per year, p = 0.002). DNAmTL shortening was strongly associated with chronic heavy alcohol use (ps < 0.001), elevated gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) (ps < 0.004). Comparison of DNAmTL with PCR-based methods of assessing TL revealed positive correlations (R = 0.3, p = 2.2 × 10-5), highlighting the accuracy of DNAmTL as a biomarker. The GWAS meta-analysis identified a single nucleotide polymorphism (SNP), rs4374022 and 18 imputed ones in Thymocyte Expressed, Positive Selection Associated 1(TESPA1), at the genome-wide level (p = 3.75 × 10-8). The allele C of rs4374022 was associated with DNAmTL shortening, lower hippocampus volume (p < 0.01), and decreased mRNA expression in hippocampus tissue (p = 0.04). Our study demonstrates DNAmTL-related aging acceleration in AUD and suggests a functional role for TESPA1 in regulating DNAmTL length, possibly via the immune system with subsequent biological effects on brain regions negatively affected by alcohol and implicated in aging.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Envejecimiento , Alcoholismo , Acortamiento del Telómero , Humanos , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Metilación de ADN/genética , Estudio de Asociación del Genoma Completo , Telómero/genética , Proteínas Adaptadoras Transductoras de Señales/genética
17.
Prostaglandins Other Lipid Mediat ; 159: 106622, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35091082

RESUMEN

The incidence of cardiovascular diseases and metabolic disorders has increased worldwide. Clinical and experimental research has shown that the consumption of ω-3 FAs can be beneficial to metabolism in several ways, as they can act on metabolic pathways. Our objective was to evaluate the effect of treatment with linseed oil, a vegetable oil rich in alpha-linolenic acid, and EPA and DHA in different proportions (3:1 EPA:DHA, and 1:3 EPA:DHA), on the metabolic disorders induced by a high-fat diet (20 % lipids) in rats for 2 weeks, after 18 weeks of consumption of a high-fat diet. In 18 weeks, the high-fat diet increased blood glucose, systolic blood pressure, triglyceride concentration in the liver and adipose tissue, and impaired insulin sensibility without interfering in the weight of the animals. All treatments were effective in reducing the deposition of hepatic type III collagen, the proportion of ω-6/ω-3 in the liver and WAT (white adipose tissue), the proportion of area/number of adipocytes, and the gene expression of the ACC, FAS, and CPT1 enzymes. In addition, treatment with EPA and DHA reduced blood glucose, serum TNF-α concentration, amount of liver fat, degree of microsteatosis and type I collagen deposition in the liver, deposition of type I and III collagen in TA, gene expression of the transcription factor SREBP-1c, and increased hepatic binucleation. EPA in major proportion was more effective in reducing the area of adipocytes, hepatic triglyceride concentration, PPAR-α expression, and WAT fat weight. DHA in a major proportion reduced the concentration of MCP1 in WAT. LO treatment did not have any isolated effects. We concluded that EPA and DHA were more effective in treating metabolic damage than treatment with LO, leading to a more favorable metabolic profile.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos Omega-3 , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Aceite de Linaza/farmacología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratas , Triglicéridos/metabolismo
18.
Rev. eletrônica enferm ; 24: 1-9, 18 jan. 2022.
Artículo en Inglés, Portugués | LILACS, BDENF - Enfermería | ID: biblio-1358259

RESUMEN

Objetivo: Analisar estudos sobre a saúde mental de pessoas com diabetes no período da pandemia de COVID-19. Método:Revisão integrativa da literatura, com busca e seleção nas bases de dados MEDLINE via PubMed®, CINAHL-Ebsco, Web of Science, Embase, PsycINFO e Cochrane. Foram incluídos sete estudos primários, disponíveis na íntegra, sem delimitação temporal ou de idioma. Resultados: A pandemia da COVID-19 impactou negativamente na saúde mental de pessoas com diabetes, prevalecendo o desenvolvimento e a intensificação dos sintomas de ansiedade, depressão e estresse. Outros desfechos avaliados evidenciaram associação entre as medidas de isolamento adotadas para controle da infecção, o sofrimento psicológico e a presença de preocupações. Conclusão: Foi evidenciado que a pandemia da COVID-19 afetou substancialmente a saúde mental de indivíduos com diabetes, sendo o distanciamento social, o medo do contágio, os distúrbios do sono e da alimentação e as preocupações com familiares determinantes para maior prevalência de sofrimento mental


Objective: To analyze studies on the mental health of people with diabetes during the COVID-19 pandemic period. Method:Integrative literature review with search and selection in the following databases: MEDLINE via PubMed®, CINAHL-Ebsco, Web of Science, Embase, PsycINFO and Cochrane. Seven primary studies available in full without temporal or language delimitation were included. Results: The COVID-19 pandemic negatively impacted the mental health of people with diabetes. The development and intensification of anxiety, depression and stress symptoms prevailed. Other outcomes evaluated showed an association between the isolation measures adopted to control the infection, psychological distress and the presence of concerns.Conclusion: The COVID-19 pandemic substantially affected the mental health of individuals with diabetes. Social distancing, fear of contagion, sleep and eating disorders and concerns with family members were determinants of a higher prevalence of mental suffering.


Asunto(s)
Salud Mental , Diabetes Mellitus/psicología , Enfermería Psiquiátrica , Pandemias
19.
Zootaxa ; 5023(3): 433-441, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34810954

RESUMEN

In the present study, specimens of Anacroneuria (Plecoptera: Perlidae) from the Mucug Municipal Park, Bahia State, Brazil were studied. The association between Anacroneuria bahiensis nymph and adult was possible because a specimen, as well as the exuviae, was collected during its emergence. Herein, we present the description of the A. bahiensis nymph, taxonomic notes on A. debilis, and an updated list of Anacroneuria species from Bahia State.


Asunto(s)
Gastrópodos , Neoptera , Animales , Brasil , Insectos , Ninfa
20.
Nutr. hosp ; 38(5)sep.-oct. 2021. tab, graf, ilus
Artículo en Inglés | IBECS | ID: ibc-224668

RESUMEN

Introduction: in the last few years important changes have occurred in nutritional patterns. There has been an increase in the consumption of simple carbohydrates such as fructose, which has been associated with numerous metabolic disorders, including hepatic steatosis. Materials and methods: we sought to evaluate the impact of fructose consumption, as diluted in water at different concentrations, for two time periods, on the metabolic parameters of Wistar rats using ANOVA. Results: our data indicate that both time and fructose concentration promote variations in animal body mass, and in food, water, and caloric intake. The time variable influenced the modulation of biochemical parameters such as serum concentrations of glucose and total cholesterol. Both fructose concentration and time of exposure influenced the concentrations of serum triglycerides, creatinine, AST, TNF, and IL-6. When evaluating redox status and oxidative damage markers, we observed that fructose concentration and exposure time had an effect on total glutathione levels, which decreased with an increase in concentration and time. For superoxide dismutase, we evaluated the effects of time and interaction. A significant interaction was observed for TBARS. For carbonylated proteins, exposure time was a fundamental factor in generating an effect. Conclusions: we demonstrated that fructose modulates the parameters of triglycerides and total liver cholesterol, and that time influences the number of hepatocytes. Our data suggest that fructose concentration, exposure time, and an interaction between these two parameters have a significant effect on the metabolic parameters responsible for the development of non-alcoholic fatty liver disease. (AU)


Introducción: en los últimos años se han producido cambios importantes en los patrones nutricionales. Ha habido un aumento del consumo de carbohidratos simples como la fructosa, que se ha asociado con numerosos trastornos metabólicos, incluida la esteatosis hepática. Materiales y métodos: buscamos evaluar el impacto del consumo de fructosa, diluida en agua a diferentes concentraciones, durante dos períodos de tiempo sobre los parámetros metabólicos de ratas Wistar, utilizando para ello el ANOVA. Resultados: nuestros datos indican que tanto el tiempo como la concentración de fructosa promueven variaciones en la masa corporal animal y la ingesta de alimentos, agua y calorías. La variable tiempo influyó en la modulación de parámetros bioquímicos tales como las concentraciones séricas de glucosa y colesterol total. Tanto la concentración de fructosa como el tiempo de exposición influyeron en las concentraciones séricas de triglicéridos, creatinina, AST, TNF e IL-6. Al evaluar el estado redox y los marcadores de daño oxidativo, observamos que la concentración de fructosa y el tiempo de exposición tuvieron un efecto sobre los niveles de glutatión total, que disminuyeron al aumentar la concentración y el tiempo. Para la superóxido dismutasa evaluamos los efectos del tiempo y la interacción. Se observó una interacción significativa para TBARS. Para las proteínas carboniladas, el tiempo de exposición fue un factor fundamental para generar algún efecto. Conclusiones: demostramos que la fructosa modula los parámetros de los triglicéridos y el colesterol total del hígado, y que el tiempo influye en el número de hepatocitos. Nuestros datos sugieren que la concentración de fructosa, el tiempo de exposición y cierta interacción entre estos dos parámetros tienen un efecto significativo sobre los parámetros metabólicos responsables del desarrollo de la enfermedad del hígado graso no alcohólico. (AU)


Asunto(s)
Animales , Ratas , Aditivos Alimentarios/normas , Fructosa/administración & dosificación , Fructosa/metabolismo , Metabolismo/efectos de los fármacos , Hígado/metabolismo , Análisis de Varianza , Aditivos Alimentarios/efectos adversos , Aditivos Alimentarios/administración & dosificación , Ratas Wistar/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...