Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(1): e9666, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36620407

RESUMEN

Understanding the ecological and evolutionary processes driving biodiversity patterns and allowing their persistence is of utmost importance. Many hypotheses have been proposed to explain spatial diversity patterns, including water-energy availability, habitat heterogeneity, and historical climatic refugia. The main goal of this study is to identify if general spatial drivers of species diversity patterns of phylogenetic diversity (PD) and phylogenetic endemism (PE) at the global scale are also predictive of PD and PE at regional scales, using Iberian amphibians as a case study. Our main hypothesis assumes that topography along with contemporary and historical climate are drivers of phylogenetic diversity and endemism, but that the strength of these predictors may be weaker at the regional scale than it tends to be at the global scale. We mapped spatial patterns of Iberian amphibians' phylogenetic diversity and endemism, using previously published phylogenetic and distribution data. Furthermore, we compiled spatial data on topographic and climatic variables related to the water-energy availability, topography, and historical climatic instability hypotheses. To test our hypotheses, we used Spatial Autoregressive Models and selected the best model to explain diversity patterns based on Akaike Information Criterion. Our results show that, out of the variables tested in our study, water-energy availability and historical climate instability are the most important drivers of amphibian diversity in Iberia. However, as predicted, the strength of these predictors in our case study is weaker than it tends to be at global scales. Thus, additional drivers should also be investigated and we suggest caution when interpreting these predictors as surrogates for different components of diversity.

2.
Trends Ecol Evol ; 38(2): 143-155, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36210287

RESUMEN

Integrative and proactive conservation approaches are critical to the long-term persistence of biodiversity. Molecular data can provide important information on evolutionary processes necessary for conserving multiple levels of biodiversity (genes, populations, species, and ecosystems). However, molecular data are rarely used to guide spatial conservation decision-making. Here, we bridge the fields of molecular ecology (ME) and systematic conservation planning (SCP) (the 'why') to build a foundation for the inclusion of molecular data into spatial conservation planning tools (the 'how'), and provide a practical guide for implementing this integrative approach for both conservation planners and molecular ecologists. The proposed framework enhances interdisciplinary capacity, which is crucial to achieving the ambitious global conservation goals envisioned for the next decade.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Ecología , Biodiversidad , Evolución Biológica
4.
Conserv Biol ; 35(2): 634-642, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32761662

RESUMEN

Protected-area systems should conserve intraspecific genetic diversity. Because genetic data require resources to obtain, several approaches have been proposed for generating plans for protected-area systems (prioritizations) when genetic data are not available. Yet such surrogate-based approaches remain poorly tested. We evaluated the effectiveness of potential surrogate-based approaches based on microsatellite genetic data collected across the Iberian Peninsula for 7 amphibian and 3 reptilian species. Long-term environmental suitability did not effectively represent sites containing high genetic diversity (allelic richness). Prioritizations based on long-term environmental suitability had similar performance to random prioritizations. Geographic distances and resistance distances based on contemporary environmental suitability were not always effective surrogates for identification of combinations of sites that contain individuals with different genetic compositions. Our results demonstrate that population genetic data based on commonly used neutral markers can inform prioritizations, and we could not find an adequate substitute. Conservation planners need to weigh the potential benefits of genetic data against their acquisition costs.


Evaluación de los Sustitutos de la Diversidad Genética para la Planeación de la Conservación Resumen Los sistemas de áreas protegidas deberían conservar la diversidad genética intraespecífica. Ya que para obtener datos genéticos se requieren recursos, se han propuesto distintas estrategias para generar los planes para los sistemas de áreas protegidas (priorizaciones) cuando los datos genéticos no están disponibles. A pesar de lo anterior, dichas estrategias basadas en sustitutos han sido poco evaluadas. Evaluamos la efectividad del potencial de las estrategias basadas en sustitutos cuya base son los datos genéticos de microsatélites obtenidos en toda la Península Ibérica y correspondientes a siete especies de anfibios y a tres de reptiles. La idoneidad ambiental a largo plazo no representó efectivamente los sitios que contienen una diversidad genética alta (riqueza de alelos). Las priorizaciones basadas en la idoneidad ambiental a largo plazo tuvieron un desempeño similar a las priorizaciones aleatorias. Las distancias geográficas y las distancias de resistencia basadas en la idoneidad ambiental contemporánea no siempre fueron sustitutos efectivos para la identificación de las combinaciones de sitios que contienen individuos con composiciones genéticas diferentes. Nuestros resultados demuestran que los datos genéticos de una población basados en marcadores neutrales de uso común pueden informar a las priorizaciones y que no pudimos encontrar un sustituto adecuado. Los planificadores de la conservación necesitan sopesar los beneficios potenciales de los datos genéticos contra sus costos de adquisición.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Europa (Continente) , Variación Genética
5.
Conserv Biol ; 35(4): 1299-1308, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33305882

RESUMEN

Marxan is the most common decision-support tool used to inform the design of protected-area systems. The original version of Marxan does not consider risk and uncertainty associated with threatening processes affecting protected areas, including uncertainty about the location and condition of species' populations and habitats now and in the future. We described and examined the functionality of a modified version of Marxan, Marxan with Probability. This software explicitly considers 4 types of uncertainty: probability that a feature exists in a particular place (estimated based on species distribution models or spatially explicit population models); probability that features in a site will be lost in the future due to a threatening process, such as climate change, natural catastrophes, and uncontrolled human interventions; probability that a feature will exist in the future due to natural successional processes, such as a fire or flood; and probability the feature exists but has been degraded by threatening processes, such as overfishing or pollution, and thus cannot contribute to conservation goals. We summarized the results of 5 studies that illustrate how each type of uncertainty can be used to inform protected area design. If there were uncertainty in species or habitat distribution, users could maximize the chance that these features were represented by including uncertainty using Marxan with Probability. Similarly, if threatening processes were considered, users minimized the chance that species or habitats were lost or degraded by using Marxan with Probability. Marxan with Probability opens up substantial new avenues for systematic conservation planning research and application by agencies.


Marxan es la herramienta de apoyo a las decisiones que más comúnmente se usa para orientar el diseño de los sistemas de áreas protegidas. La versión original de Marxan no considera el riesgo y la incertidumbre asociados con los procesos amenazantes que afectan a las áreas protegidas, incluyendo la incertidumbre sobre la ubicación y la condición de las poblaciones de las especies y su hábitat ahora y en el futuro. Describimos y analizamos la funcionalidad de una versión modificada de Marxan: Marxan con Probabilidad. Este software considera explícitamente cuatro tipos de incertidumbre: probabilidad de que una característica exista en un lugar en particular (estimada con base en los modelos de distribución de especies o con modelos de población espacialmente explícitos); probabilidad de que las características de un sitio se pierdan en el futuro debido a un proceso amenazante, como el cambio climático, las catástrofes naturales y las intervenciones humanas descontroladas; probabilidad de que una característica existirá en el futuro debido a los procesos naturales de sucesión; como los incendios o las inundaciones; y probabilidad de que una característica exista pero haya sido degradada por los procesos amenazantes, como la sobrepesca y la contaminación, y por lo tanto no puede contribuir a los objetivos de conservación. Sintetizamos los resultados de cinco estudios que ilustraron cómo cada tipo de incertidumbre puede usarse para orientar el diseño del área protegida. Si hubiera incertidumbre en la distribución de la especie o de su hábitat, los usuarios podrían maximizar la posibilidad de que estas características estuvieran representadas mediante la inclusión de Marxan con Probabilidad. De manera similar, si los procesos amenazantes estuvieran considerados, los usuarios minimizarían la posibilidad de que se pierda la especie o degrade el hábitat usando Marxan con Probabilidad. Marxan con Probabilidad abre nuevas vías importantes para la investigación sobre la planeación sistemática de la conservación y su aplicación por parte de las agencias.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Biodiversidad , Ecosistema , Humanos , Programas Informáticos
6.
Ecol Evol ; 10(19): 10353-10363, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33072264

RESUMEN

Reduced representation genome sequencing has popularized the application of single nucleotide polymorphisms (SNPs) to address evolutionary and conservation questions in nonmodel organisms. Patterns of genetic structure and diversity based on SNPs often diverge from those obtained with microsatellites to different degrees, but few studies have explicitly compared their performance under similar sampling regimes in a shared analytical framework. We compared range-wide patterns of genetic structure and diversity in two amphibians endemic to the Iberian Peninsula: Hyla molleri and Pelobates cultripes, based on microsatellite (18 and 14 loci) and SNP (15,412 and 33,140 loci) datasets of comparable sample size and spatial extent. Model-based clustering analyses with STRUCTURE revealed minor differences in genetic structure between marker types, but inconsistent values of the optimal number of populations (K) inferred. SNPs yielded more repeatable and less admixed ancestries with increasing K compared to microsatellites. Genetic diversity was weakly correlated between marker types, with SNPs providing a better representation of southern refugia and of gradients of genetic diversity congruent with the demographic history of both species. Our results suggest that the larger number of loci in a SNP dataset can provide more reliable inferences of patterns of genetic structure and diversity than a typical microsatellite dataset, at least at the spatial and temporal scales investigated.

7.
Mol Ecol Resour ; 19(4): 1081-1094, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30873736

RESUMEN

Estimating geographical ranges of intra-specific evolutionary lineages is crucial to the fields of biogeography, evolution, and biodiversity conservation. Models of isolation mechanisms often consider multiple distances in order to explain genetic divergence. Yet, the available methods to estimate the geographical ranges of lineages are based on direct geographical distances, neglecting other distance metrics that can better explain the spatial genetic structure. We extended the phylogeographical interpolation method (phylin) in order to accommodate user-defined distance metrics and to incorporate the uncertainty associated with genetic distance calculation. These new features were tested with simulated and empirical data sets. Multiple distance matrices were generated including geographical, resistance, and environmental distances to derive maps of lineage occurrence. The new additions to this method improved the ability to predict lineage occurrence, even with low sample size. We used a regression framework to quantify the relationship between the genetic divergence and competing distance matrices representing potential isolation processes that are subsequently used in the interpolation process. Including uncertainty in tree topology and the different distance matrices improved the robustness of the variograms, allowing a better fit of the theoretical model of spatial dependence. The improvements to the method increase its potential application in other fields. Accurately mapping genetic divergence can help to locate potential contact zones between lineages as well as barriers to gene flow, which has a broad interest in biogeographical and evolutionary studies. Additionally, conservation efforts could benefit from the integration of genetic variation and landscape features in a spatially explicit framework.


Asunto(s)
Bioestadística/métodos , Biología Computacional/métodos , Filogeografía/métodos
8.
Nat Ecol Evol ; 1(6): 151, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28812637

RESUMEN

Accounting for evolutionary relationships between and within species is important for biodiversity conservation planning, but is rarely considered in practice. Here we introduce a novel framework to identify priority conservation areas accounting for phylogenetic and intraspecific diversity, integrating concepts from phylogeny, phylogeography, spatial statistics and spatial conservation prioritization. The framework allows planners to incorporate and combine different levels of evolutionary diversity and can be applied to any taxonomic group and to any region in the world. We illustrate our approach using amphibian and reptile species occurring in a biodiversity hotspot region, the Iberian Peninsula. We found that explicitly incorporating phylogenetic and intraspecific diversity in systematic conservation planning provides advantages in terms of maximizing overall biodiversity representation while enhancing its persistence and evolutionary potential. Our results emphasize the need to account for the evolutionary continuum in order to efficiently implement biodiversity conservation planning decisions.

9.
Biol Rev Camb Philos Soc ; 92(2): 698-715, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-26785932

RESUMEN

The use of phylogenies in ecology is increasingly common and has broadened our understanding of biological diversity. Ecological sub-disciplines, particularly conservation, community ecology and macroecology, all recognize the value of evolutionary relationships but the resulting development of phylogenetic approaches has led to a proliferation of phylogenetic diversity metrics. The use of many metrics across the sub-disciplines hampers potential meta-analyses, syntheses, and generalizations of existing results. Further, there is no guide for selecting the appropriate metric for a given question, and different metrics are frequently used to address similar questions. To improve the choice, application, and interpretation of phylo-diversity metrics, we organize existing metrics by expanding on a unifying framework for phylogenetic information. Generally, questions about phylogenetic relationships within or between assemblages tend to ask three types of question: how much; how different; or how regular? We show that these questions reflect three dimensions of a phylogenetic tree: richness, divergence, and regularity. We classify 70 existing phylo-diversity metrics based on their mathematical form within these three dimensions and identify 'anchor' representatives: for α-diversity metrics these are PD (Faith's phylogenetic diversity), MPD (mean pairwise distance), and VPD (variation of pairwise distances). By analysing mathematical formulae and using simulations, we use this framework to identify metrics that mix dimensions, and we provide a guide to choosing and using the most appropriate metrics. We show that metric choice requires connecting the research question with the correct dimension of the framework and that there are logical approaches to selecting and interpreting metrics. The guide outlined herein will help researchers navigate the current jungle of indices.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecología/métodos , Filogenia , Biodiversidad , Evolución Biológica
10.
Mol Ecol ; 24(15): 3802-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26033415

RESUMEN

Genetic data are being generated at unprecedented rates. Policies of many journals, institutions and funding bodies aim to ensure that these data are publicly archived so that published results are reproducible. Additionally, publicly archived data can be 'repurposed' to address new questions in the future. In 2011, along with other leading journals in ecology and evolution, Molecular Ecology implemented mandatory public data archiving (the Joint Data Archiving Policy). To evaluate the effect of this policy, we assessed the genetic, spatial and temporal data archived for 419 data sets from 289 articles in Molecular Ecology from 2009 to 2013. We then determined whether archived data could be used to reproduce analyses as presented in the manuscript. We found that the journal's mandatory archiving policy has had a substantial positive impact, increasing genetic data archiving from 49 (pre-2011) to 98% (2011-present). However, 31% of publicly archived genetic data sets could not be recreated based on information supplied in either the manuscript or public archives, with incomplete data or inconsistent codes linking genetic data and metadata as the primary reasons. While the majority of articles did provide some geographic information, 40% did not provide this information as geographic coordinates. Furthermore, a large proportion of articles did not contain any information regarding date of sampling (40%). Although the inclusion of spatio-temporal data does require an increase in effort, we argue that the enduring value of publicly accessible genetic data to the molecular ecology field is greatly compromised when such metadata are not archived alongside genetic data.


Asunto(s)
Bibliometría , Curaduría de Datos , Conjuntos de Datos como Asunto , Publicaciones Periódicas como Asunto , Políticas Editoriales , Genética/estadística & datos numéricos , Análisis Espacio-Temporal
11.
PLoS One ; 10(5): e0127980, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26000981

RESUMEN

The quantification of realized niche overlap and the integration of species distribution models (SDMs) with calibrated phylogenies to study niche evolution are becoming not only powerful tools to understand speciation events, but can also be used as proxies regarding the delimitation of cryptic species. We applied these techniques in order to unravel how the fundamental niche evolved during cladogenesis within the Tarentola mauritanica species-complex. Our results suggest that diversification within this complex, during the Miocene and Pleistocene, is associated with both niche divergence and niche conservatism, with a pattern that varies depending on whether the variables involved are related to the mean or seasonality of temperature and humidity. Moreover, climatic variables related to humidity and temperature seasonality were involved in the niche shift and genetic diversification of the European/North African clade during the Pleistocene and in its maintenance in a fundamental niche distinct from that of the remaining members of the group. This study further highlights the need for a taxonomic revision of the T. mauritanica species-complex.


Asunto(s)
Evolución Biológica , Especiación Genética , Lagartos/genética , Animales , Clima , ADN Mitocondrial , Lagartos/clasificación , Filogenia
12.
Mol Ecol Resour ; 15(2): 349-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25132358

RESUMEN

phylin is a package for the r programming environment which offers different methods to spatially interpolate genetic information from phylogeographic data. These interpolations can be used to predict the spatial occurrence of different lineages within a phylogeny using a modified method of kriging, which allows the usage of a genetic distance matrix to derive a model of spatial dependence. phylin improves the available methods to generate interpolated surfaces from a phylogenetic trees by assessing the autocorrelation structure of the genetic information, interpolating the genetic data based on a statistical model, estimating the uncertainty of the predictions and identifying lineage occurrence and contact zones probability without projection of pairwise genetic distances into mid-points between sample locations. The package also includes methods to plot interpolation surfaces and provide summary tables from the generated data and models. We provide an example of the usefulness of this tool by inferring the spatial occurrence of distinct historical evolutionary lineages of the Lataste's viper (Vipera latastei Boscá, 1878) in the Iberian Peninsula and identifying potential contact areas. The maps of phylogenetic patterns obtained with these methods provide a spatial context to test hypotheses related to processes underlying the geographic distribution of genetic diversity and to inform conservation planning.


Asunto(s)
Biología Computacional/métodos , Filogeografía/métodos , Programas Informáticos , Animales , Viperidae/clasificación , Viperidae/genética
13.
PLoS One ; 9(1): e87291, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24475265

RESUMEN

Here we develop a framework to design multi-species monitoring networks using species distribution models and conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe). Maximum entropy modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or maintain suitable climatic space. We then used a decision support tool (the Marxan software) to design three optimized monitoring networks considering: a) changes in species likely occurrence, b) species conservation status, and c) level of volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment, included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional approach that only considers current species ranges, in allocating monitoring stations distributed across different categories of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also ensuring surveillance of general population trends.


Asunto(s)
Distribución Animal/fisiología , Quirópteros/fisiología , Cambio Climático , Conservación de los Recursos Naturales/métodos , Seguimiento de Parámetros Ecológicos/métodos , Animales , Simulación por Computador , Técnicas de Apoyo para la Decisión , Modelos Biológicos , Dinámica Poblacional , Portugal , Especificidad de la Especie
14.
Biol Rev Camb Philos Soc ; 89(1): 215-31, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23848599

RESUMEN

Deserts and arid regions are generally perceived as bare and rather homogeneous areas of low diversity. The Sahara is the largest warm desert in the world and together with the arid Sahel displays high topographical and climatic heterogeneity, and has experienced recent and strong climatic oscillations that have greatly shifted biodiversity distribution and community composition. The large size, remoteness and long-term political instability of the Sahara-Sahel, have limited knowledge on its biodiversity. However, over the last decade, there have been an increasing number of published scientific studies based on modern geomatic and molecular tools, and broad sampling of taxa of these regions. This review tracks trends in knowledge about biodiversity patterns, processes and threats across the Sahara-Sahel, and anticipates needs for biodiversity research and conservation. Recent studies are changing completely the perception of regional biodiversity patterns. Instead of relatively low species diversity with distribution covering most of the region, studies now suggest a high rate of endemism and larger number of species, with much narrower and fragmented ranges, frequently limited to micro-hotspots of biodiversity. Molecular-based studies are also unravelling cryptic diversity associated with mountains, which together with recent distribution atlases, allows identifying integrative biogeographic patterns in biodiversity distribution. Mapping of multivariate environmental variation (at 1 km × 1 km resolution) of the region illustrates main biogeographical features of the Sahara-Sahel and supports recently hypothesised dispersal corridors and refugia. Micro-scale water-features present mostly in mountains have been associated with local biodiversity hotspots. However, the distribution of available data on vertebrates highlights current knowledge gaps that still apply to a large proportion of the Sahara-Sahel. Current research is providing insights into key evolutionary and ecological processes, including causes and timing of radiation and divergence for multiple taxa, and associating the onset of the Sahara with diversification processes for low-mobility vertebrates. Examples of phylogeographic patterns are showing the importance of allopatric speciation in the Sahara-Sahel, and this review presents a synthetic overview of the most commonly hypothesised diversification mechanisms. Studies are also stressing that biodiversity is threatened by increasing human activities in the region, including overhunting and natural resources prospection, and in the future by predicted global warming. A representation of areas of conflict, landmines, and natural resources extraction illustrates how human activities and regional insecurity are hampering biodiversity research and conservation. Although there are still numerous knowledge gaps for the optimised conservation of biodiversity in the region, a set of research priorities is provided to identify the framework data needed to support regional conservation planning.


Asunto(s)
Biodiversidad , Evolución Biológica , Conservación de los Recursos Naturales , África del Norte , Animales , Clima Desértico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...