Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 11: 1353832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638290

RESUMEN

A "green breakthough" at the table due to consumer demand for healthy and sustainable foods, which aligns with the typical Mediterranean diet, has recently led to an increase in the consumption of products such as extra virgin olive oil. In fact, Italian olive cultivation, which contributes an average of 15% of world production, has seen the production of extra virgin olive oil with a value of exports that have doubled in the last 20 years. In this context, the olive oil sector of the Emilia-Romagna region (Italy), and in particular the PDO Brisighella, could achieve greater success with consumers by proposing a product obtained through sustainable agriculture that enhances the content of bioactive compounds. For these reasons, in this study, different agronomic variables are investigated in order to optimize the presence of bioactive components in extra virgin olive oil made from monovarietal Nostrana di Brisighella, namely phenolic and positive volatile compounds, thus naturally enriching this product both from health and sensory points of view. The study focuses on the volatile and phenolic fractions (derivatives of hydroxytyrosol and tyrosol) of olive oil and the positive sensory attributes (fruity, bitter and pungent) that are known to be associated with these molecules. The phenolic content is of particular interest due to the potential to support health claims. Extra virgin olive oil samples were produced from olives of the Nostrana di Brisighella cultivar; fruits were obtained through integrated pest management or organic farming and picked at four increasing indices of maturity, corresponding to four successive weeks of harvesting. These agronomic variables influenced the compositional and sensory characteristics of the extra virgin olive oils assessed, highlighting differences that likely derive from the effect of the agronomic system used, i.e., integrated pest management or organic farming.

2.
MethodsX ; 10: 101972, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36593759

RESUMEN

During the course of the EU H2020 OLEUM project, a harmonized method was developed to quantify volatile markers of the aroma of virgin olive oil with the aim to support the work of sensory panel test to assess the quality grade. A peer validation of this method has been carried out, with good results in terms of analytical quality parameters. The method allows the quantification of volatile compounds by SPME-GC with two possible detectors, flame ionization detector and mass spectrometry, depending on the technical facilities of the labs applying this method. The method was optimized for the quantification of 18 volatile compounds that were selected as being markers responsible for positive attributes (e.g. fruity) and sensory defects (e.g. rancid and winey-vinegary). The quantification is carried out with calibration curves corrected by the internal standards. Additionally, a protocol is provided to prepare the calibration samples. This procedure enhances reproducibility between labs since one of the main sources of errors is the application of different procedures in calibration.

3.
Foods ; 11(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36360058

RESUMEN

The demand for high-quality extra virgin olive oil (EVOO) is growing due to its unique characteristics. The aroma and flavor of EVOO depend on its content of volatile organic compounds (VOCs), whose formation is affected by the olive variety and maturity index, and the oil production process. In this study, the sensory quality and VOC and fatty acid (FA) profiles were determined in Arbequina olive oils produced by applying different malaxation parameters (20, 25, and 30 °C, and 30 and 45 min). All the olive oils were classified as EVOO by a sensory panel, regardless of the production conditions. However, cold extraction at 20 °C resulted in more positive sensory attributes (complexity). The FA concentration increased significantly with the malaxation temperature, although the percentage profile remained unaltered. Finally, an OPLS-DA model was generated to identify the discriminating variables that separated the samples according to the malaxation temperature. In conclusion, the tested range of malaxation parameters appeared not to degrade the distinctive attributes/organoleptic profile of olive oil and could be applied to obtain an EVOO of high sensory quality, especially at 20 °C.

4.
Foods ; 11(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35159554

RESUMEN

The extraction of molecules with high added value plays an important role in the recovery of food waste. This work aimed to valorize tomato pomace, a by-product composed of skin and seeds, through extraction of carotenoids, especially lycopene and ß-carotene. The tomato pomace was dried using three different methods (freeze-drying, heat drying, and non-thermal air-drying) to reduce its weight, volume, and water activity and to concentrate the carotenoid fraction. These drying approaches were compared considering the extractive potential. Three solvent mixtures were compared, a traditional one (n-hexane:acetone) and two green deep eutectic solvent mixtures (ethyl acetate:ethyl lactate and menthol:lactic acid) in combination with different drying procedures. The extract obtained using ethyl acetate:ethyl lactate with non-thermal air-drying showed the highest contents of lycopene and ß-carotene (75.86 and 3950.08 µg/g of dried sample, respectively) compared with the other procedures.

5.
Foods ; 9(5)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443697

RESUMEN

Sensory evaluation, carried out by panel tests, is essential for quality classification of virgin olive oils (VOOs), but is time consuming and costly when many samples need to be assessed; sensory evaluation could be assisted by the application of screening methods. Rapid instrumental methods based on the analysis of volatile molecules might be considered interesting to assist the panel test through fast pre-classification of samples with a known level of probability, thus increasing the efficiency of quality control. With this objective, a headspace gas chromatography-ion mobility spectrometer (HS-GC-IMS) was used to analyze 198 commercial VOOs (extra virgin, virgin and lampante) by a semi-targeted approach. Different partial least squares-discriminant analysis (PLS-DA) chemometric models were then built by data matrices composed of 15 volatile compounds, which were previously selected as markers: a first approach was proposed to classify samples according to their quality grade and a second based on the presence of sensory defects. The performance (intra-day and inter-day repeatability, linearity) of the method was evaluated. The average percentages of correctly classified samples obtained from the two models were satisfactory, namely 77% (prediction of the quality grades) and 64% (prediction of the presence of three defects) in external validation, thus demonstrating that this easy-to-use screening instrumental approach is promising to support the work carried out by panel tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...