Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 104(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37668349

RESUMEN

Human cytomegalovirus (HCMV) primary infections are typically asymptomatic in healthy individuals yet can cause increased morbidity and mortality in organ transplant recipients, AIDS patients, neonates, and the elderly. The successful, widespread dissemination of this virus among the population can be attributed in part to its wide cellular tropism and ability to establish life-long latency. HCMV infection is a multi-step process that requires numerous cellular and viral factors. The viral envelope consists of envelope protein complexes that interact with cellular factors; such interactions dictate virus recognition and attachment to different cell types, followed by fusion either at the cell membrane or within an endocytic vesicle. Several HCMV entry factors, including neuropilin-2 (Nrp2), THBD, CD147, OR14I1, and CD46, are characterized as participating in HCMV pentamer-specific entry of non-fibroblast cells such as epithelial, trophoblast, and endothelial cells, respectively. This study focuses on characterizing the structural elements of CD46 that impact HCMV infection. Infectivity studies of wild-type and CD46 knockout epithelial cells demonstrated that levels of CD46 expressed on the cell surface were directly related to HCMV infectivity. Overexpression of CD46 isomers BC1, BC2, and C2 enhanced infection. Further, CD46 knockout epithelial cells expressing CD46 deletion and chimeric molecules identified that the intact ectodomain was critical for rescue of HCMV infection in CD46 knockout cells. Collectively, these data support a model that the extracellular domain of CD46 participates in HCMV infection due to its surface expression.


Asunto(s)
Infecciones por Citomegalovirus , Células Endoteliales , Proteína Cofactora de Membrana , Humanos , Membrana Celular , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Células Epiteliales , Proteína Cofactora de Membrana/genética
2.
Antiviral Res ; 193: 105124, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34197862

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that establishes a life-long infection affecting up to 80% of the US population. HCMV periodically reactivates leading to enhanced morbidity and mortality in immunosuppressed patients causing a range of complications including organ transplant failure and cognitive disorders in neonates. Therapeutic options for HCMV are limited to a handful of antivirals that target late stages of the virus life cycle and efficacy is often challenged by the emergence of mutations that confer resistance. In addition, these antiviral therapies may have adverse reactions including neutropenia in newborns and an increase in adverse cardiac events in HSCT patients. These findings highlight the need to develop novel therapeutics that target different steps of the viral life cycle. To this end, we screened a small molecule library against ion transporters to identify new antivirals against the early steps of virus infection. We identified valspodar, a 2nd-generation ABC transporter inhibitor, that limits HCMV infection as demonstrated by the decrease in IE2 expression of virus infected cells. Cells treated with increasing concentrations of valspodar over a 9-day period show minimal cytotoxicity. Importantly, valspodar limits HCMV plaque numbers in comparison to DMSO controls demonstrating its ability to inhibit viral dissemination. Collectively, valspodar represents a potential new anti-HCMV therapeutic that limits virus infection by likely targeting a host factor. Further, the data suggest that specific ABC transporters may participate in the HCMV life-cycle.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/farmacología , Ciclosporinas/farmacología , Infecciones por Citomegalovirus/tratamiento farmacológico , Citomegalovirus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Antivirales/farmacología , Línea Celular , Células Cultivadas , Infecciones por Citomegalovirus/virología , Humanos , Pruebas de Sensibilidad Microbiana , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...