Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 354, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270659

RESUMEN

Planktonic Foraminifera are unique paleo-environmental indicators through their excellent fossil record in ocean sediments. Their distribution and diversity are affected by different environmental factors including anthropogenically forced ocean and climate change. Until now, historical changes in their distribution have not been fully assessed at the global scale. Here we present the FORCIS (Foraminifera Response to Climatic Stress) database on foraminiferal species diversity and distribution in the global ocean from 1910 until 2018 including published and unpublished data. The FORCIS database includes data collected using plankton tows, continuous plankton recorder, sediment traps and plankton pump, and contains ~22,000, ~157,000, ~9,000, ~400 subsamples, respectively (one single plankton aliquot collected within a depth range, time interval, size fraction range, at a single location) from each category. Our database provides a perspective of the distribution patterns of planktonic Foraminifera in the global ocean on large spatial (regional to basin scale, and at the vertical scale), and temporal (seasonal to interdecadal) scales over the past century.


Asunto(s)
Foraminíferos , Censos , Cambio Climático , Océanos y Mares , Plancton
2.
PLoS Biol ; 20(6): e3001640, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35671265

RESUMEN

Reef fishes are closely connected to many human populations, yet their contributions to society are mostly considered through their economic and ecological values. Cultural and intrinsic values of reef fishes to the public can be critical drivers of conservation investment and success, but remain challenging to quantify. Aesthetic value represents one of the most immediate and direct means by which human societies engage with biodiversity, and can be evaluated from species to ecosystems. Here, we provide the aesthetic value of 2,417 ray-finned reef fish species by combining intensive evaluation of photographs of fishes by humans with predicted values from machine learning. We identified important biases in species' aesthetic value relating to evolutionary history, ecological traits, and International Union for Conservation of Nature (IUCN) threat status. The most beautiful fishes are tightly packed into small parts of both the phylogenetic tree and the ecological trait space. In contrast, the less attractive fishes are the most ecologically and evolutionary distinct species and those recognized as threatened. Our study highlights likely important mismatches between potential public support for conservation and the species most in need of this support. It also provides a pathway for scaling-up our understanding of what are both an important nonmaterial facet of biodiversity and a key component of nature's contribution to people, which could help better anticipate consequences of species loss and assist in developing appropriate communication strategies.


Asunto(s)
Arrecifes de Coral , Ecosistema , Animales , Biodiversidad , Conservación de los Recursos Naturales , Estética , Peces , Humanos , Filogenia
4.
Ecol Lett ; 24(9): 1988-2009, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34015168

RESUMEN

Trait-based ecology aims to understand the processes that generate the overarching diversity of organismal traits and their influence on ecosystem functioning. Achieving this goal requires simplifying this complexity in synthetic axes defining a trait space and to cluster species based on their traits while identifying those with unique combinations of traits. However, so far, we know little about the dimensionality, the robustness to trait omission and the structure of these trait spaces. Here, we propose a unified framework and a synthesis across 30 trait datasets representing a broad variety of taxa, ecosystems and spatial scales to show that a common trade-off between trait space quality and operationality appears between three and six dimensions. The robustness to trait omission is generally low but highly variable among datasets. We also highlight invariant scaling relationships, whatever organismal complexity, between the number of clusters, the number of species in the dominant cluster and the number of unique species with total species richness. When species richness increases, the number of unique species saturates, whereas species tend to disproportionately pack in the richest cluster. Based on these results, we propose some rules of thumb to build species trait spaces and estimate subsequent functional diversity indices.


Asunto(s)
Biodiversidad , Ecosistema , Ecología , Fenotipo , Proyectos de Investigación
5.
Sci Data ; 8(1): 89, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758194

RESUMEN

Trees play a key role in the structure and function of many ecosystems worldwide. In the Mediterranean Basin, forests cover approximately 22% of the total land area hosting a large number of endemics (46 species). Despite its particularities and vulnerability, the biodiversity of Mediterranean trees is not well known at the taxonomic, spatial, functional, and genetic levels required for conservation applications. The WOODIV database fills this gap by providing reliable occurrences, four functional traits (plant height, seed mass, wood density, and specific leaf area), and sequences from three DNA-regions (rbcL, matK, and trnH-psbA), together with modelled occurrences and a phylogeny for all 210 Euro-Mediterranean tree species. We compiled, homogenized, and verified occurrence data from sparse datasets and collated them on an INSPIRE-compliant 10 × 10 km grid. We also gathered functional trait and genetic data, filling existing gaps where possible. The WOODIV database can benefit macroecological studies in the fields of conservation, biogeography, and community ecology.


Asunto(s)
Bases de Datos Factuales , Bosques , Árboles , Ecosistema , Región Mediterránea , Filogenia
6.
Nat Commun ; 11(1): 5071, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033235

RESUMEN

Identifying species that are both geographically restricted and functionally distinct, i.e. supporting rare traits and functions, is of prime importance given their risk of extinction and their potential contribution to ecosystem functioning. We use global species distributions and functional traits for birds and mammals to identify the ecologically rare species, understand their characteristics, and identify hotspots. We find that ecologically rare species are disproportionately represented in IUCN threatened categories, insufficiently covered by protected areas, and for some of them sensitive to current and future threats. While they are more abundant overall in countries with a low human development index, some countries with high human development index are also hotspots of ecological rarity, suggesting transboundary responsibility for their conservation. Altogether, these results state that more conservation emphasis should be given to ecological rarity given future environmental conditions and the need to sustain multiple ecosystem processes in the long-term.


Asunto(s)
Aves/fisiología , Conservación de los Recursos Naturales , Ecosistema , Internacionalidad , Mamíferos/fisiología , Animales , Geografía , Humanos , Cubierta de Hielo , Filogenia , Análisis de Componente Principal , Especificidad de la Especie
7.
PLoS One ; 13(8): e0201094, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30089136

RESUMEN

Predicting species distributions requires substantial numbers of georeferenced occurrences and access to remotely sensed climate and land cover data. Reliable estimates of the distribution of most species are unavailable, either because digitized georeferenced distributional data are rare or not digitized. The emergence of online biodiversity information databases and citizen science platforms dramatically improves the amount of information available to establish current and historical distribution of lesser-documented species. We demonstrate how the combination of museum and online citizen science databases can be used to build reliable distribution maps for poorly documented species. To do so, we investigated the distribution and the potential range expansions of two north-eastern North American spider species (Arachnida: Araneae), the Northern black widow (Latrodectus variolus) and the Black purse-web spider (Sphodros niger). Our results provide the first predictions of distribution for these two species. We also found that the Northern black widow has expanded north of its previously known range providing valuable information for public health education. For the Black purse-web spider, we identify potential habitats outside of its currently known range, thus providing a better understanding of the ecology of this poorly-documented species. We demonstrate that increasingly available online biodiversity databases are rapidly expanding biogeography research for conservation, ecology, and in specific cases, epidemiology, of lesser known taxa.


Asunto(s)
Distribución Animal/clasificación , Participación de la Comunidad/métodos , Predicción/métodos , Animales , Araña Viuda Negra , Simulación por Computador , Ecología/métodos , Museos , Arañas
8.
Sci Rep ; 8(1): 8530, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29867211

RESUMEN

Indirect impacts of climate change, mediated by new species interactions (including pathogens or parasites) will likely be key drivers of biodiversity reorganization. In addition, direct effects of extreme weather events remain understudied. Simultaneous investigation of the significance of ectoparasites on host populations and extreme weather events is lacking, especially in the Arctic. Here we document the consequences of recent black fly outbreaks and extreme precipitation events on the reproductive output of an arctic top predator, the peregrine falcon (Falco peregrinus tundrius) nesting at the northern range limit of ornithophilic black flies in Nunavut, Canada. Overall, black fly outbreaks and heavy rain reduced annual nestling survival by up to 30% and 50% respectively. High mortality caused by ectoparasites followed record-breaking spring snow precipitation, which likely increased stream discharge and nutrient runoff, two key parameters involved in growth and survival of black fly larvae. Using the RCP4.5 intermediate climate scenario run under the Canadian Global Climate Model, we anticipate a northward expansion of black fly distribution in Arctic regions. Our case study demonstrates that, in the context of climate change, extreme weather events can have substantial direct and indirect effects on reproductive output of an arctic top-predator population.


Asunto(s)
Enfermedades de las Aves/parasitología , Infestaciones Ectoparasitarias , Falconiformes/parasitología , Modelos Biológicos , Reproducción , Simuliidae , Animales , Regiones Árticas , Canadá , Cambio Climático , Femenino , Masculino , Estaciones del Año
9.
Sci Rep ; 8(1): 4623, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545528

RESUMEN

The Northern Biodiversity Paradox predicts that, despite its globally negative effects on biodiversity, climate change will increase biodiversity in northern regions where many species are limited by low temperatures. We assessed the potential impacts of climate change on the biodiversity of a northern network of 1,749 protected areas spread over >600,000 km2 in Quebec, Canada. Using ecological niche modeling, we calculated potential changes in the probability of occurrence of 529 species to evaluate the potential impacts of climate change on (1) species gain, loss, turnover, and richness in protected areas, (2) representativity of protected areas, and (3) extent of species ranges located in protected areas. We predict a major species turnover over time, with 49% of total protected land area potentially experiencing a species turnover >80%. We also predict increases in regional species richness, representativity of protected areas, and species protection provided by protected areas. Although we did not model the likelihood of species colonising habitats that become suitable as a result of climate change, northern protected areas should ultimately become important refuges for species tracking climate northward. This is the first study to examine in such details the potential effects of climate change on a northern protected area network.

10.
PLoS One ; 11(3): e0152495, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27015274

RESUMEN

An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.


Asunto(s)
Biodiversidad , Cambio Climático , Clima , Árboles/fisiología , Análisis por Conglomerados , Ecología , Ecosistema , Geografía , Modelos Estadísticos , Dinámica Poblacional , Quebec , Especificidad de la Especie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...