Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(1): 1154-1167, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643536

RESUMEN

N-nitrosamines are widespread cancerogenic compounds in human environment, including water, tobacco products, food, and medicinal products. Their presence in pharmaceuticals has recently led to several recalls of important medicines from the market, and strict controls and tight limits of N-nitrosamines are now required. Analytical determination of N-nitrosamines is expensive, laborious, and time-inefficient making development of simpler and faster techniques for their detection crucial. Several reports published in the previous decade have demonstrated that cobalt porphyrin-based chemosensors selectively bind N-nitrosamines, which produces a red shift of characteristic Soret band in UV-Vis spectra. In this study, a thorough re-evaluation of metalloporphyrin/N-nitrosamine adducts was performed using various characterization methods. Herein, we demonstrate that while N-nitrosamines can interact directly with cobalt-based porphyrin complexes, the red shift in UV-Vis spectra is not selectively assured and might also result from the interaction between impurities in N-nitrosamines and porphyrin skeleton or interaction of other functional groups within the N-nitrosamine structure and the metal ion within the porphyrin. We show that pyridine nitrogen is the interacting atom in tobacco-specific N-nitrosamines (TSNAs), as pyridine itself is an active ligand and not the N-nitrosamine moiety. When using Co(II) porphyrins as chemosensors, acidic and basic impurities in dialkyl N-nitrosamines (e.g., formic acid, dimethylamine) are also UV-Vis spectra red shift-producing species. Treatment of these N-nitrosamines with K2CO3 prevents the observed UV-Vis phenomena. These results imply that cobalt-based metalloporphyrins cannot be considered as selective chemosensors for UV-Vis detection of N-nitrosamine moiety-containing species. Therefore, special caution in interpretation of UV-Vis red shift for chemical sensors is suggested.

2.
Pharmaceutics ; 14(8)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36015269

RESUMEN

Glasdegib is a recently approved drug for the treatment of acute myeloid leukemia. It is formulated and marketed in monomaleate salt form. In our investigation, we were able to prepare a glasdegib dimaleate form, which could, in theory, exist in double-salt form or as a mixture of salt and co-crystal species. Therefore, the obtained crystals of glasdegib dimaleate were characterized via 15N ssNMR and single-crystal X-ray diffraction, which revealed that the obtained glasdegib dimaleate exists in double-salt form. This is a surprising finding based on the pKa values for glasdegib and maleic acid. Furthermore, we fully characterized the new dimaleate form using thermal analyses (DSC and TGA) and spectroscopy (IR and Raman). Finally, the physicochemical properties, such as solubility and chemical stability, of both forms were determined and compared.

3.
Chem Sci ; 13(10): 2946-2953, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35432849

RESUMEN

This work describes the first preparation and application of primary trifluoroborate-iminiums (pTIMs) as a new, easily accessible and valuable class of organoboron derivatives. An array of structurally diverse pTIMs was prepared from potassium acyltrifluoroborates in excellent yields. Highly efficient and enantioselective [(R,R)-TethTsDpen-RuCl] complex-catalyzed hydrogenation of pTIMs provided direct access to chiral primary trifluoroborate-ammoniums (pTAMs). Moreover, facile synthesis of a series of structurally diverse chiral α-aminoboronic acids from chiral pTAMs was accomplished through novel, operationally simple and efficient conversion using hexamethyldisiloxane/aqueous HCl. Using no chromatography at any point, this work allowed easy access to chiral α-aminoboronic acids, as exemplified by the synthesis of optically pure anti-cancer drugs bortezomib and ixazomib.

4.
ACS Omega ; 7(10): 8896-8905, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35309479

RESUMEN

Cabotegravir is one of the newly approved human immunodeficiency virus (HIV) integrase enzyme inhibitors used for the prevention and treatment of HIV infection. It is the first approved long-acting injectable antiretroviral therapy for HIV and is also very effective in combination with rilpivirine, a non-nucleoside reverse transcriptase inhibitor. Therefore, future drug development involving cabotegravir can be expected. We developed an ultrahigh performance liquid chromatography (UHPLC) method compatible with mass spectrometry for the determination of eight cabotegravir impurities. The described method is able to differentiate cabotegravir and its related substances as well as its degradation products. Analytical quality by design principles were used for method development. The method is robust within the defined method operable design region: flow rate = 0.32-0.40 mL/min; column temperature = 30-40 °C; pH of mobile phase A = 3.25-3.75, and the final percent of acetonitrile in gradient = 50.0-60.0%. Inside the method operable design region, a working optimal point was selected: pump flow rate = 0.36 mL/min; column temperature = 35 °C; pH of mobile phase A = 3.5, and final percent of acetonitrile in gradient = 55%. Method validation was performed, and the following parameters were verified: accuracy, repeatability, linearity, response factors, detection limit, and quantification limit. All method validation results were within selected criteria. The presented method could be used for the development of new pharmaceutical products based on cabotegravir.

5.
J Org Chem ; 87(4): 2129-2135, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-34592102

RESUMEN

A concise six-step asymmetric synthesis of nearly enantiomerically pure ramelteon was developed from a monocyclic precursor with a 17% overall yield and a 97% ee in the asymmetric step. The synthetically challenging tricyclic 1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan core of ramelteon was assembled by using Ir-catalyzed O-vinylation and Rh-catalyzed vinyl ether annulation through directed C-H bond activation, while the chirality was introduced with enantioselective reduction of an α,ß-unsaturated nitrile moiety under hydrosilylation conditions using a CuII/Walphos type catalyst. The presented methodology represents the shortest synthetic approach to ramelteon.


Asunto(s)
Acetofenonas , Catálisis , Indenos , Estereoisomerismo
6.
J Pharm Biomed Anal ; 201: 114096, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33957367

RESUMEN

Cabotegravir is a novel human immunodeficiency virus integrase enzyme inhibitor used for prevention and treatment of HIV infection. The combinational final dosage form, as extended release injection suspension in combination with rilpivirine and as cabotegravir tablets (for lead-in therapy), was recently approved in Canada, EU and in USA and is currently seeking approval also in other countries. The subject of this investigation was to study the degradation of cabotegravir under different stress conditions as per the International Council for Harmonization (ICH) guidelines. The drug substance was found to be stable in thermal, photolytic and basic stress conditions, but degraded under acidic and oxidative stress conditions. It was determined that four main degradation products of cabotegravir are formed in forced degradation studies. All four main degradation products were isolated using preparative chromatography and subjected to NMR and HRMS analysis in order to determine their structure. We proposed degradation pathways of cabotegravir under acidic stress conditions in solution based on the structure of isolated degradation products, cabotegravir degradation kinetic studies and degradation studies on two isolated key degradation products. Moreover, degradation pathway to predominant oxidation degradation product is proposed based on the adduct of cabotegravir and peroxide species, which was identified by LC-HRMS analysis. This is the first report to the best of our knowledge that describes characterized cabotegravir forced degradation impurities and provides insights into its degradation pathways.


Asunto(s)
Infecciones por VIH , Estabilidad de Medicamentos , Humanos , Hidrólisis , Cinética , Oxidación-Reducción , Piridonas
7.
ACS Omega ; 5(29): 17868-17875, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32743157

RESUMEN

The most common types of acylboranes are acyltrifluoroborates, acyl MIDA-boronates, and monofluoroacylboronates. Because of the increasing importance of these compounds in the past decade, we highlight the recently reported synthetic strategies to access acylboranes. In addition, an expanding array of their applications has been discovered, based on either the ability of acylboranes to enter rapid amide-forming ligations or the retained ketone-like character of the carbonyl group. Therefore, we also describe ground-breaking achievements where acylboranes were successfully put to use, such as their utility in biochemical, material, and medicinal sciences.

8.
ACS Omega ; 5(28): 17726-17742, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32715260

RESUMEN

Venetoclax is an emerging drug for the treatment of various types of blood cancers. It was first approved in 2016 for the treatment of relapsed and refractory chronic lymphocytic leukemia. Later, the indications expanded, and multiple research as well as clinical studies are still conducted involving venetoclax. No analytical method for the determination of venetoclax can currently be found in the literature. We developed a mass spectrometry-compatible stability-indicating ultrahigh-performance liquid chromatography (LC) method for venetoclax. The LC method was developed using analytical quality by design principles. The developed method is able to separate venetoclax and its degradation products. The method was validated in the working point where a linearity range was established and accuracy, repeatability, and selectivity were assessed. Venetoclax is the only Bcl-2 protein inhibitor on the market. It is very effective in combinational therapy, so future drug development involving venetoclax may be expected. A stability-indicating method could aid in the development of new pharmaceutical products with venetoclax.

9.
Pharmaceutics ; 12(7)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645956

RESUMEN

Venetoclax is an orally bioavailable, B-cell lymphoma-2 (BCL-2) selective inhibitor, used for the treatment of various types of blood cancers, such as chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL). In this study we investigated the degradation of venetoclax under various stress conditions including acidic, basic, oxidative, photolytic and thermolytic conditions. We isolated and identified six of its main degradation products produced in forced degradation studies. The structures of the isolated degradation products were determined by using nuclear magnetic resonance (NMR) spectroscopy, high resolution mass spectrometry (HRMS) and infrared (IR) spectroscopy. Additionally, one oxidation degradation product was identified with comparison to a commercially obtained venetoclax impurity. We proposed the key degradation pathways of venetoclax in solution. To the best of our knowledge, no structures of degradation products of venetoclax have been previously published. The study provides novel and primary knowledge of the stability characteristics of venetoclax under stress conditions. Venetoclax is currently the only BCL-2 protein inhibitor on the market. In addition to single agent treatment, it is effective in combinational therapy, so future drug development involving venetoclax can be expected. A better insight into the stability properties of the therapeutic can facilitate future studies involving venetoclax and aid in the search of new similar therapeutics.

10.
Molecules ; 25(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531959

RESUMEN

This article presents the development of a reversed-phase ultra-high-performance liquid chromatographic method for determining process-related impurities in ropinirole hydrochloride drug substance applying the analytical quality by design approach. The current pharmacopeial method suffers from selectivity issues due to two coelutions of two pairs of impurities. The development of a new method began with preliminary experiments, based on which the Acquity UPLC BEH C8 was selected as the most appropriate column. The effects of six different critical method parameters (CMPs) were then investigated using a fractional factorial screening design. Column temperature, the ratio of methanol in mobile phase B, and gradient slope turned out to be highly significant CMPs in achieving critical resolutions, and they were further evaluated using a central composite face-centered response-surface design. Mathematical models were created by applying a multiple linear regression method. Based on the elution order of an unknown degradation impurity and impurity C, two design spaces were established, and for each design space an optimal combination of CMPs was determined. The method developed was validated for precision, accuracy, linearity, and sensitivity, and it was proven suitable for determining nine process-related impurities of ropinirole.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Contaminación de Medicamentos/estadística & datos numéricos , Indoles/análisis , Modelos Teóricos , Control de Calidad , Indoles/química , Límite de Detección , Reproducibilidad de los Resultados
11.
Pharmaceutics ; 12(4)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290280

RESUMEN

Tenofovir alafenamide fumarate (TAF) is the newest prodrug of tenofovir that constitutes several drug products used for the treatment of HIV/AIDS. Although the solid-state properties of its predecessor tenofovir disoproxil fumarate have been investigated and described in the literature, there are no data in the scientific literature on the solid state properties of TAF. In our report, we describe the preparation of two novel polymorphs II and III of tenofovir alafenamide monofumarate (TA MF2 and TA MF3). The solid-state structure of these compounds was investigated in parallel to the previously known tenofovir alafenamide monofumarate form I (TA MF1) and tenofovir alafenamide hemifumarate (TA HF). Interestingly, the single-crystal X-ray diffraction of TA HF revealed that this derivative exists as a co-crystal form. In addition, we prepared a crystalline tenofovir alafenamide free base (TA) and its hydrochloride salt (TA HCl), which enabled us to determine the structure of TA MF derivatives using 15N-ssNMR (15N-solid state nuclear magnetic resonance). Surprisingly, we observed that TA MF1 exists as a mixed ionization state complex or pure salt, while TA MF2 and TA MF3 can be obtained as pure co-crystal forms.

12.
Molecules ; 25(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272592

RESUMEN

d-cycloserine is a broad-spectrum antibiotic that is currently being used as a secondary choice in the treatment of tuberculosis. In recent years, it has become more popular, due to its effect on the nervous system. In this current study, we provide evidence that The International Pharmacopoeia HPLC-UV method for d-cycloserine impurity profiling is not repeatable due to the variable response of cycloserine dimer, one of d-cycloserine impurities. Therefore, we introduced the DOSY (diffusion ordered spectroscopy) NMR (nuclear magnetic resonance) technique to determine the levels of d-cycloserine impurities in pharmaceutical dosage forms. The DOSY NMR technique allowed separation of d-cycloserine, its degradation products, and key process impurities in concentrations below pharmacopoeial specification limits. The proposed DOSY NMR method allowed accurate identification and quantification of the cycloserine dimer, which was not possible through the use of the pharmacopoeial HPLC method. The current method has the potential for practical use in analytical laboratories of the pharmaceutical industry.


Asunto(s)
Cicloserina/química , Preparaciones Farmacéuticas/química , Química Farmacéutica/métodos , Cromatografía Líquida de Alta Presión/métodos , Difusión , Contaminación de Medicamentos , Espectroscopía de Resonancia Magnética/métodos
13.
ACS Omega ; 5(10): 5356-5364, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32201825

RESUMEN

Various organic impurities (starting materials, reagents, intermediates, degradation products, by-products, and side products) could be present in active pharmaceutical ingredients affecting their qualities, safeties, and efficacies. Herein, we present the efficient syntheses of two United States Pharmacopeia impurities of an antidiabetic drug sitagliptin, a potent and orally active dipeptidyl peptidase IV inhibitor: 3-desamino-2,3-dehydrositagliptin and 3-desamino-3,4-dehydrositagliptin. Our three-step synthetic approach is based on the efficient cobalt-catalyzed cross-coupling reaction of 1-bromo-2,4,5-trifluorobenzene and methyl 4-bromocrotonate in the first step, followed by hydrolysis of corresponding ester with 3 M HCl to (E)-(2,4,5-trifluorophenyl)but-2-enoic acid in high overall yield, whereas the reaction with 3 M NaOH resulted in the carbon-carbon double bond regio-isomerization and hydrolysis to give the (E)-(2,4,5-trifluorophenyl)but-3-enoic acid in 92% yield. Both acid derivatives were converted to title compounds via the amide bond formation with 3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazine. Extensive screening of coupling/activation reagents, bases, and solvents reviled that the amide bond is formed the most efficiently using the (COCl)2/Et3N in THF or alternatively EDC/NMM/(DMAP or HOBt) in DMF obtaining the title compounds in 68-76% yields and providing the overall yields for the three-step process in the range of 57-64% on a gram scale. The presented study also demonstrates the importance of a proper selection of solvent, base, and coupling/activating reagent for amide bond formation using Michael acceptor-type allylbenzene derivatives as coupling partners to minimize the carbon-carbon double bond regio-isomerization.

14.
Molecules ; 25(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069880

RESUMEN

This article presents the development of a reversed-phase (RP) high-performance liquid chromatographic (HPLC) method for determination of process-related impurities in a celecoxib drug substance following Analytical Quality by Design (AQbD) principles. The method from European Pharmacopeia (EP) for celecoxib drug substance does not sufficiently separate celecoxib from its EP impurity B because the system suitability criterion is not achieved (resolution NLT 1.8). The same issue was observed with the proposed method from United States Pharmacopeia (USP) for celecoxib capsules, where EP impurity A elutes under the main peak. A new HPLC method was developed that eliminates the disadvantages of the two pharmacopeial methods and is capable of efficiently separating and determining all seven impurities listed in EP and the proposed USP monographs. The development of a new HPLC method started with method scouting, in which various C18 and phenyl stationary phases were tested. Improved selectivity was obtained only with a chiral stationary phase. An immobilized Chiralpak IA-3 column used in RP mode turned out to be the most appropriate for method optimization. The ratio of acetonitrile in the mobile phase, flow rate, and column temperature were recognized as critical method parameters (CMPs) and were further investigated using a central composite face response-surface design. A multiple linear regression (MLR) method was applied to fit the mathematical models on the experimental data to determine factor-response relationships. The models created show adequate fit and good prediction abilities. The Monte Carlo simulation method was used to establish the design space. The method developed was verified in terms of precision, sensitivity, accuracy, and linearity, and the results showed that the new method is suitable for determination of seven process-related impurities of celecoxib.


Asunto(s)
Celecoxib/análisis , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Modelos Lineales
15.
Pharmaceutics ; 12(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906507

RESUMEN

Reactive impurities originating from excipients can cause drug stability issues, even at trace amounts. When produced during final dosage form storage, they are especially hard to control, and often, factors inducing their formation remain unidentified. Oxidative degradation dependent formation of formaldehyde and formic acid is responsible for N-methylation and N-formylation of amine-moiety-containing drug substances. A very popular combination of polyethylene glycols and iron oxides, used in more than two-thirds of FDA-approved tablet formulation drugs in 2018, was found to be responsible for increased concentrations of N-methyl impurity in the case of paroxetine hydrochloride. We propose a novel testing approach for early identification of potentially problematic combinations of excipients and drug substances. The polyethylene glycol 6000 degradation mechanism and kinetics in the presence of iron oxides is studied. The generality of the proposed stress test setup in view of the susceptibility of amine-moiety-containing drug substances to N-methylation and N-formylation is evaluated.

16.
Expert Opin Ther Pat ; 30(3): 195-208, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31944142

RESUMEN

Introduction: Studies presented in the patent applications demonstrate that a new integrase strand transfer inhibitor cabotegravir might be used as long-acting antiretroviral formulation or delivery system that reduces dosing frequency and may therefore increase adherence and thus pre-exposure prophylaxis (PrEP) and treatment efficacy against HIV. As announced in 2019, the developer ViiV Healthcare seeks US and EU approval of long-acting, injectable HIV treatment.Area covered: This review covers all the patent applications published until October 2019 with cabotegravir in the examples or claim section of the patent application document. The patent applications cover drug substance synthesis, solid-state forms, therapeutic applications, in vitro and in vivo efficacy as well as the potential formulations of cabotegravir alone or in combination with other anti-HIV agents.Expert opinion: The results from multiple clinical studies suggest that cabotegravir can be used as PrEP agent and treatment agent against HIV. Multiple studies use cabotegravir in combination with other anti-HIV agents such as rilpivirine. Cabotegravir in combination with rilpivirine is an interesting therapeutic, due to the possibility of formulating long-acting formulation with dosing interval of every 4 weeks or less, thus reducing daily pill burden and improving patient's compliance.


Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Infecciones por VIH/tratamiento farmacológico , Piridonas/administración & dosificación , Animales , Fármacos Anti-VIH/farmacología , Quimioterapia Combinada , Humanos , Cumplimiento de la Medicación , Patentes como Asunto , Profilaxis Pre-Exposición , Piridonas/farmacología , Rilpivirina/administración & dosificación
17.
Pharmaceutics ; 11(9)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480788

RESUMEN

Drug substance degradation kinetics in solid dosage forms is rarely mechanistically modeled due to several potential micro-environmental and manufacturing related effects that need to be integrated into rate laws. The aim of our work was to construct a model capable of predicting individual degradation product concentrations, taking into account also formulation composition parameters. A comprehensive study was done on active film-coated tablets, manufactured by layering of the drug substance, a primary amine compound saxagliptin, onto inert tablet cores. Formulation variables like polyethylene glycol (PEG) 6000 amount and film-coat polymer composition are incorporated into the model, and are connected to saxagliptin degradation, via formation of reactive impurities. Derived reaction equations are based on mechanisms supported by ab initio calculations of individual reaction activation energies. Alongside temperature, relative humidity, and reactant concentration, the drug substance impurity profile is dependent on micro-environmental pH, altered by formation of acidic PEG degradation products. A consequence of pH lowering, due to formation of formic acid, is lower formation of main saxagliptin degradation product epi-cyclic amidine, a better resistance of formulation to high relative humidity conditions, and satisfactory tablet appearance. Discovered insights enhance the understanding of degradational behavior of similarly composed solid dosage forms on overall drug product quality and may be adopted by pharmaceutical scientists for the design of a stable formulation.

18.
Expert Opin Ther Pat ; 29(7): 487-496, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31154862

RESUMEN

INTRODUCTION: Studies presented in patents show that a novel chemotherapeutic agent, venetoclax, might be useful in additional therapeutic indications. Venetoclax is approved in America for the treatment of patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). Venetoclax selectively inhibits the B-cell lymphoma-2 (Bcl-2) protein, an anti-apoptotic protein that can be overexpressed in most B-cell lymphoid malignancies. AREAS COVERED: This is a review of all the patents granted until November 2018, with venetoclax in the examples or claim section of the patent document. The patents include the synthesis, polymorphism, formulations, in vitro and in vivo efficacy as well as the therapeutic application of venetoclax. EXPERT OPINION: The approved indications for treatment with venetoclax are limited but expanding rapidly. Studies suggest that venetoclax might be useful in several other therapeutic indications, mostly other hematological malignancies. Numerous studies use venetoclax in combinations with other therapeutic agents. Such combinational treatment shows promising results in additional indications as well as drug-resistant cancers. Venetoclax is an interesting new therapeutic involved in a variety of clinical research. Patent applications in recent years even include venetoclax in somewhat exotic fields such as type 1 diabetes, asthma, and Zika virus treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Sulfonamidas/administración & dosificación , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Resistencia a Antineoplásicos , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Patentes como Asunto , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Sulfonamidas/farmacología
19.
Bioorg Med Chem ; 26(14): 4348-4359, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30006144

RESUMEN

We have elaborated a one-pot three-component assembly of trityl olmesartan medoxomil starting from commercially available ethyl 4-(2-hydroxypropan-2-yl)-2-propyl-1H-imidazole-5-carboxylate, 5-(4'-(bromomethyl)-[1,1'-biphenyl]-2-yl)-1-trityl-1H-tetrazole and 4-(chloromethyl)-5-methyl-1,3-dioxol-2-one intermediates. The developed and optimized one-pot process provides 72-75% yield of trityl olmesartan medoxomil over three steps, which represents in average ca. 90% yield per synthetic step, on a 300 g scale. The process is conducted in simple fashion and provides highly pure trityl olmesartan medoxomil (up to 97.5% by HPLC), which can be easily converted to olmesartan medoxomil that fully complies with all ICH requirements. Furthermore, the described process significantly improves the primary process to trityl olmesartan medoxomil by drastic reduction of required unit operations and application of single reaction solvent through the reaction sequence. Moreover, the amount of used organic solvents was notably reduced. The developed process has provided solid bases for industrial production of trityl olmesartan medoxomil.


Asunto(s)
Olmesartán Medoxomilo/síntesis química , Estructura Molecular , Olmesartán Medoxomilo/química
20.
Bioorg Med Chem ; 26(9): 2691-2697, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29678534

RESUMEN

We have elaborated a two-step catalytic approach to nafoxidine, a key precursor to lasofoxifene. Firstly, an efficient α-arylation of 6-methoxy-3,4-dihydronaphthalen-1(2H)-one with chlorobenzene was developed, which operates at low 0.1 mol% Pd-132 catalyst loading in the presence of 1.9 equivalents of sodium tert-butoxide at 60 °C in 1,4-dioxane and provides 6-methoxy-2-phenyl-3,4-dihydronaphthalen-1(2H)-one in 90% yield. Secondly, we have demonstrated that 6-methoxy-2-phenyl-3,4-dihydronaphthalen-1(2H)-one can be converted to nafoxidine in 61% yield via CeCl3 promoted reaction with (4-(2-(pyrrolidin-1-yl)ethoxy)phenyl)lithium, which is formed in-situ from the corresponding arylbromide precursor and n-butyllithium. Altogether, the shortest two-step approach to nafoxidine from simple tetralone commodity starting material has been developed with overall 55% yield. The developed synthetic approach to nafoxidine has several beneficial aspects over the one used in the synthetic route primarily developed for the preparation of lasofoxifene.


Asunto(s)
Nafoxidina/síntesis química , Catálisis , Complejos de Coordinación/química , Paladio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...