Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 88: 102003, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117041

RESUMEN

OBJECTIVES: A decline in mitochondrial function and increased susceptibility to oxidative stress is a hallmark of ageing. Exercise endogenously generates reactive oxygen species (ROS) in skeletal muscle and promotes mitochondrial remodelling resulting in improved mitochondrial function. It is unclear how exercise induced redox signalling results in alterations in mitochondrial dynamics and morphology. METHODS: In this study, a Caenorhabditis elegans model of exercise and ageing was used to determine the mechanistic role of Peroxiredoxin 2 (PRDX-2) in regulating mitochondrial morphology. Mitochondrial morphology was analysed using transgenic reporter strains and transmission electron microscopy, complimented with the analysis of the effects of ageing and exercise on physiological activity. RESULTS: The redox state of PRDX-2 was altered with exercise and ageing, hyperoxidised peroxiredoxins were detected in old worms along with basally elevated intracellular ROS. Exercise generated intracellular ROS and rapid mitochondrial remodelling, which was disrupted with age. The exercise intervention promoted mitochondrial ER contact sites (MERCS) assembly and increased DAF-16/FOXO nuclear localisation. The prdx-2 mutant strain had a disrupted mitochondrial network as evidenced by increased mitochondrial fragmentation. In the prdx-2 mutant strain, exercise did not activate DAF-16/FOXO, mitophagy or increase MERCS assembly. The results demonstrate that exercise generated ROS increased DAF-16/FOXO transcription factor nuclear localisation required for activation of mitochondrial fusion events that were blunted with age. CONCLUSIONS: The data demonstrate the critical role of PRDX-2 in orchestrating mitochondrial remodelling in response to a physiological stress by regulating redox dependent DAF-16/FOXO nuclear localisation.


Asunto(s)
Envejecimiento , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Factores de Transcripción Forkhead , Mitocondrias , Estrés Oxidativo , Peroxirredoxinas , Condicionamiento Físico Animal , Especies Reactivas de Oxígeno , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Mitocondrias/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción , Transducción de Señal
2.
Cell Mol Life Sci ; 81(1): 250, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847861

RESUMEN

Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Oxidación-Reducción , Transducción de Señal , Respuesta de Proteína Desplegada , Humanos , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Estrés del Retículo Endoplásmico
3.
Redox Biol ; 60: 102631, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36791646

RESUMEN

Exercise generates a site-specific increase in Reactive Oxygen Species (ROS) within muscle that promotes changes in gene transcription and mitochondrial biogenesis, required for the beneficial adaptive response. We demonstrate that Peroxiredoxin 2 (Prdx2), an abundant cytoplasmic 2-Cys peroxiredoxin, is required for the adaptive hormesis response to physiological levels of H2O2 in myoblasts and following exercise in C. elegans. A short bolus addition of H2O2 increases mitochondrial capacity and improves myogenesis of cultured myoblasts, this beneficial adaptive response was suppressed in myoblasts with decreased expression of cytoplasmic Prdxs. Moreover, a swimming exercise protocol in C. elegans increased mitochondrial content, fitness, survival and longevity in wild type (N2) worms. In contrast, prdx-2 mutant worms had decreased fitness, disrupted mitochondria, reduced survival and lifespan following exercise. Global proteomics following exercise identified distinct changes in the proteome of N2 and prdx-2 mutants. Furthermore, a redox proteomic approach to quantify reversible oxidation of specific Cysteine residues revealed a more reduced redox state in the non-exercised prdx-2 mutant strain that become oxidized following exercise. In contrast, specific Cys residues from regulatory proteins become more reduced in the N2 strain following exercise, establishing the key regulatory role of PRDX-2 in a redox signalling cascade following endogenous ROS generation. Our results demonstrate that conserved cytoplasmic 2-Cys Peroxiredoxins are required for the beneficial adaptive response to a physiological redox stress.


Asunto(s)
Proteínas de Caenorhabditis elegans , Peroxirredoxinas , Animales , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caenorhabditis elegans/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteómica , Oxidación-Reducción , Cisteína/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
5.
Antioxidants (Basel) ; 9(4)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340146

RESUMEN

Ageing is associated with disrupted redox signalling and increased circulating inflammatory cytokines. Skeletal muscle homeostasis depends on the balance between muscle hypertrophy, atrophy and regeneration, however during ageing this balance is disrupted. The molecular pathways underlying the age-related decline in muscle regenerative potential remain elusive. microRNAs are conserved robust gene expression regulators in all tissues including skeletal muscle. Here, we studied satellite cells from adult and old mice to demonstrate that inhibition of miR-21 in satellite cells from old mice improves myogenesis. We determined that increased levels of proinflammatory cytokines, TNFα and IL6, as well as H2O2, increased miR-21 expression in primary myoblasts, which in turn resulted in their decreased viability and myogenic potential. Inhibition of miR-21 function rescued the decreased size of myotubes following TNFα or IL6 treatment. Moreover, we demonstrated that miR-21 could inhibit myogenesis in vitro via regulating IL6R, PTEN and FOXO3 signalling. In summary, upregulation of miR-21 in satellite cells and muscle during ageing may occur in response to elevated levels of TNFα and IL6, within satellite cells or myofibrillar environment contributing to skeletal muscle ageing and potentially a disease-related decline in potential for muscle regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA