Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Res Sq ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38766160

RESUMEN

Obesity occurs because the body stores surplus calories as fat rather than as muscle. Fat secretes a hormone, leptin, that modulates energy balance at the brain. Changes in fat mass are mirrored by changes in serum leptin. Elevated leptin prompts the brain to decrease appetite and increase energy expenditure. In obesity, however, impaired leptin sensitivity mutes these leptin-mediated changes. We have limited understanding of what controls leptin production by fat or leptin sensitivity in the brain. Muscle produces a hormone, myostatin, that plays a role in muscle analogous to the one that leptin plays in fat. Absent myostatin leads to increased muscle mass and strength. As with leptin, we also do not know what controls myostatin production or sensitivity. Although fat mass and muscle mass are closely linked, the interplay between leptin and myostatin remains obscure. Here we describe an interplay linked thru vitamin D. Conventionally, it is thought that vitamin D improves strength via trophic effects at the muscle. However, we find here that high dose dietary vitamin D allocates excess calories to muscle and linear growth instead of storage as fat. Vitamin D mediates this allocation by decreasing myostatin production and increasing leptin production and sensitivity. That is, high dose vitamin D improves integration of organismal energy balance. Obesity, aging and other chronic inflammatory diseases are associated with increased fat mass and decreased muscle mass and function (e.g. sarcopenia). Our work provides a physiologic framework for how high-dose vitamin D would increase allocation of calories to muscle instead of fat in these pathologies. Additionally, our work reveals a novel link between the myostatin and leptin signaling whereby myostatin conveys energy needs to modulate leptin effects on calorie allocation. This result provides evidence to update the conventional model of energy stores sensing to a new model of energy balance sensing. In our proposed model, integration of leptin and myostatin signaling allows control of body composition independent of weight. Furthermore, our work reveals how physiologic seasonal variation in vitamin D may be important in controlling season-specific metabolism and calorie allocation to fat in winter and muscle and growth in summer.

2.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464021

RESUMEN

The rising quality and amount of multi-omic data across biomedical science demands that we build innovative solutions to harness their collective discovery potential. From publicly available repositories, we have assembled and curated a compendium of gene-level transcriptomic data focused on mammalian excitatory neurogenesis in the neocortex. This collection is open for exploration by both computational and cell biologists at nemoanalytics.org, and this report forms a demonstration of its utility. Applying our novel structured joint decomposition approach to mouse, macaque and human data from the collection, we define transcriptome dynamics that are conserved across mammalian excitatory neurogenesis and which map onto the genetics of human brain structure and disease. Leveraging additional data within NeMO Analytics via projection methods, we chart the dynamics of these fundamental molecular elements of neurogenesis across developmental time and space and into postnatal life. Reversing the direction of our investigation, we use transcriptomic data from laminar-specific dissection of adult human neocortex to define molecular signatures specific to excitatory neuronal cell types resident in individual layers of the mature neocortex, and trace their emergence across development. We show that while many lineage defining transcription factors are most highly expressed at early fetal ages, the laminar neuronal identities which they drive take years to decades to reach full maturity. Finally, we interrogated data from stem-cell derived cerebral organoid systems demonstrating that many fundamental elements of in vivo development are recapitulated with high-fidelity in vitro, while specific transcriptomic programs in neuronal maturation are absent. We propose these analyses as specific applications of the general approach of combining joint decomposition with large curated collections of analysis-ready multi-omics data matrices focused on particular cell and disease contexts. Importantly, these open environments are accessible to, and must be fueled with emerging data by, cell biologists with and without coding expertise.

3.
PLoS Comput Biol ; 18(9): e1010430, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070311

RESUMEN

Genetic risk for complex traits is strongly enriched in non-coding genomic regions involved in gene regulation, especially enhancers. However, we lack adequate tools to connect the characteristics of these disruptions to genetic risk. Here, we propose RWAS (Regulome Wide Association Study), a new application of the MAGMA software package to identify the characteristics of enhancers that contribute to genetic risk for disease. RWAS involves three steps: (i) assign genotyped SNPs to cell type- or tissue-specific regulatory features (e.g., enhancers); (ii) test associations of each regulatory feature with a trait of interest for which genome-wide association study (GWAS) summary statistics are available; (iii) perform enhancer-set enrichment analyses to identify quantitative or categorical features of regulatory elements that are associated with the trait. These steps are implemented as a novel application of MAGMA, a tool originally developed for gene-based GWAS analyses. Applying RWAS to interrogate genetic risk for schizophrenia, we discovered a class of risk-associated AT-rich enhancers that are active in the developing brain and harbor binding sites for multiple transcription factors with neurodevelopmental functions. RWAS utilizes open-source software, and we provide a comprehensive collection of annotations for tissue-specific enhancer locations and features, including their evolutionary conservation, AT content, and co-localization with binding sites for hundreds of TFs. RWAS will enable researchers to characterize properties of regulatory elements associated with any trait of interest for which GWAS summary statistics are available.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Elementos de Facilitación Genéticos/genética , Polimorfismo de Nucleótido Simple/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Nature ; 598(7879): 205-213, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616060

RESUMEN

During mammalian development, differences in chromatin state coincide with cellular differentiation and reflect changes in the gene regulatory landscape1. In the developing brain, cell fate specification and topographic identity are important for defining cell identity2 and confer selective vulnerabilities to neurodevelopmental disorders3. Here, to identify cell-type-specific chromatin accessibility patterns in the developing human brain, we used a single-cell assay for transposase accessibility by sequencing (scATAC-seq) in primary tissue samples from the human forebrain. We applied unbiased analyses to identify genomic loci that undergo extensive cell-type- and brain-region-specific changes in accessibility during neurogenesis, and an integrative analysis to predict cell-type-specific candidate regulatory elements. We found that cerebral organoids recapitulate most putative cell-type-specific enhancer accessibility patterns but lack many cell-type-specific open chromatin regions that are found in vivo. Systematic comparison of chromatin accessibility across brain regions revealed unexpected diversity among neural progenitor cells in the cerebral cortex and implicated retinoic acid signalling in the specification of neuronal lineage identity in the prefrontal cortex. Together, our results reveal the important contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical development.


Asunto(s)
Encéfalo/citología , Epigenómica , Neurogénesis , Análisis de la Célula Individual , Atlas como Asunto , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Susceptibilidad a Enfermedades , Elementos de Facilitación Genéticos , Humanos , Neuronas/citología , Neuronas/metabolismo , Organoides/citología , Tretinoina/metabolismo
5.
PLoS Genet ; 16(9): e1009025, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986727

RESUMEN

Age-related hearing impairment (ARHI), one of the most common medical conditions, is strongly heritable, yet its genetic causes remain largely unknown. We conducted a meta-analysis of GWAS summary statistics from multiple hearing-related traits in the UK Biobank (n = up to 330,759) and identified 31 genome-wide significant risk loci for self-reported hearing difficulty (p < 5x10-8), of which eight have not been reported previously in the peer-reviewed literature. We investigated the regulatory and cell specific expression for these loci by generating mRNA-seq, ATAC-seq, and single-cell RNA-seq from cells in the mouse cochlea. Risk-associated genes were most strongly enriched for expression in cochlear epithelial cells, as well as for genes related to sensory perception and known Mendelian deafness genes, supporting their relevance to auditory function. Regions of the human genome homologous to open chromatin in epithelial cells from the mouse were strongly enriched for heritable risk for hearing difficulty, even after adjusting for baseline effects of evolutionary conservation and cell-type non-specific regulatory regions. Epigenomic and statistical fine-mapping most strongly supported 50 putative risk genes. Of these, 39 were expressed robustly in mouse cochlea and 16 were enriched specifically in sensory hair cells. These results reveal new risk loci and risk genes for hearing difficulty and suggest an important role for altered gene regulation in the cochlear sensory epithelium.


Asunto(s)
Cóclea/citología , Sitios Genéticos , Predisposición Genética a la Enfermedad , Pérdida Auditiva/genética , Adulto , Animales , Bancos de Muestras Biológicas , Cromatina/genética , Estudios de Cohortes , Epigenoma , Células Epiteliales/fisiología , Femenino , Estudio de Asociación del Genoma Completo , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/fisiología , Humanos , Ratones Endogámicos ICR , Ratones Endogámicos , Polimorfismo de Nucleótido Simple , Análisis de la Célula Individual , Reino Unido
6.
Cell Rep ; 32(7): 108029, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32814038

RESUMEN

Characterizing the tissue-specific binding sites of transcription factors (TFs) is essential to reconstruct gene regulatory networks and predict functions for non-coding genetic variation. DNase-seq footprinting enables the prediction of genome-wide binding sites for hundreds of TFs simultaneously. Despite the public availability of high-quality DNase-seq data from hundreds of samples, a comprehensive, up-to-date resource for the locations of genomic footprints is lacking. Here, we develop a scalable footprinting workflow using two state-of-the-art algorithms: Wellington and HINT. We apply our workflow to detect footprints in 192 ENCODE DNase-seq experiments and predict the genomic occupancy of 1,515 human TFs in 27 human tissues. We validate that these footprints overlap true-positive TF binding sites from ChIP-seq. We demonstrate that the locations, depth, and tissue specificity of footprints predict effects of genetic variants on gene expression and capture a substantial proportion of genetic risk for complex traits.


Asunto(s)
Sitios de Unión/genética , Desoxirribonucleasas/metabolismo , Genómica/métodos , Factores de Transcripción/metabolismo , Humanos
7.
J Clin Endocrinol Metab ; 105(5)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32115644

RESUMEN

CONTEXT: Normal vitamin D homeostasis is necessary to ensure optimal mineral metabolism. Dietary insufficiency of vitamin D and the lack of sunlight each have well understood roles in vitamin D deficiency; however, the extent to which common genetic variations in vitamin D metabolizing enzymes contribute to alterations in vitamin D homeostasis remains uncertain. OBJECTIVE: To examine the possibility that common coding variation in vitamin D metabolizing enzymes alters vitamin D homeostasis we determined the effect of 44 nonsynonymous polymorphisms in CYP2R1, the vitamin D 25-hydroxylase, on enzyme function. RESULTS: Twenty-one of these polymorphisms decreased activity, while 2 variants increased activity. The frequency of CYP2R1 alleles with decreased 25-hydroxylase activity is 3 in every 1000 Caucasians and 7 in every 1000 African Americans. In populations where exposure to sunlight is high, alleles with decreased function occur at a frequency as high as 8%. The pattern of selected variation as compared to nonselected variation is consistent with it being the result of positive selection for nonfunctional alleles closer to the equator. To examine this possibility, we examined the variation pattern in another protein in the vitamin D pathway, the vitamin D binding protein (GC protein). The pattern of selected variation in the GC protein as compared to nonselected variation is also consistent with it being the result of positive selection for nonfunctional alleles closer to the equator. CONCLUSIONS: CYP2R1 polymorphisms have important effects on vitamin D homeostasis, and the geographic variability of CYP2R1 alleles represents an adaptation to differential exposures to UVB irradiation from sunlight.


Asunto(s)
Colestanotriol 26-Monooxigenasa/genética , Familia 2 del Citocromo P450/genética , Frecuencia de los Genes , Selección Genética , Vitamina D/metabolismo , Adaptación Biológica/genética , Adaptación Biológica/efectos de la radiación , Sustitución de Aminoácidos/genética , Predisposición Genética a la Enfermedad , Genética de Población , Geografía , Células HEK293 , Homeostasis/genética , Humanos , Redes y Vías Metabólicas/genética , Polimorfismo de Nucleótido Simple , Pigmentación de la Piel/genética , Rayos Ultravioleta , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/genética , Deficiencia de Vitamina D/metabolismo
8.
Cell Syst ; 8(2): 122-135.e7, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30772379

RESUMEN

Transcriptional regulatory changes in the developing and adult brain are prominent features of brain diseases, but the involvement of specific transcription factors (TFs) remains poorly understood. We integrated brain-specific DNase footprinting and TF-gene co-expression to reconstruct a transcriptional regulatory network (TRN) model for the human brain. We identified key regulator TFs whose predicted target genes were enriched for differentially expressed genes in the prefrontal cortex of individuals with psychiatric and neurodegenerative diseases. Many of these TFs were further implicated in the same diseases through disruption of their binding sites by disease-associated SNPs and associations of TF loci with disease risk. Using primary human neural stem cells, we validated network predictions that link the TF POU3F2 to schizophrenia and bipolar disorder via both cis- and trans-acting mechanisms. Our models of brain-specific TF binding sites and target genes provide a resource for network analysis of brain diseases.


Asunto(s)
Redes Reguladoras de Genes/genética , Genómica/métodos , Enfermedades Neurodegenerativas/genética , Psiquiatría/métodos , Factores de Transcripción/genética , Femenino , Humanos , Masculino
9.
J Bone Miner Res ; 34(6): 1068-1073, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30790351

RESUMEN

Normal vitamin D homeostasis is critical for optimal health; nevertheless, vitamin D deficiency is a worldwide public health problem. Vitamin D insufficiency is most commonly due to inadequate cutaneous synthesis of cholecalciferol and/or insufficient intake of vitamin D, but can also arise as a consequence of pathological states such as obesity. Serum concentrations of 25(OH)D (calcidiol) are low in obesity, and fail to increase appropriately after vitamin D supplementation. Although sequestration of vitamin D in adipose tissues or dilution of ingested or cutaneously synthesized vitamin D in the large fat mass of obese patients has been proposed to explain these findings, here we investigate the alternative mechanism that reduced capacity to convert parent vitamin D to 25(OH)D due to decreased expression of CYP2R1, the principal hepatic vitamin D 25-hydroxylase. To test this hypothesis, we isolated livers from female mice of 6 to 24 weeks of age, weaned onto either a normal chow diet or a high-fat diet, and determined the abundance of Cyp2r1 mRNA using digital droplet-quantitative PCR. We observed a significant (p < 0.001) decrease in Cyp2r1 mRNA in the liver of high-fat diet-fed mice relative to lean-chow-fed female mice. Moreover, there was a significant (p < 0.01) relationship between levels of Cyp2r1 mRNA and serum 25(OH)D concentrations as well as between Cyp2R1 mRNA and the ratio of circulating 25(OH)D3 to cholecalciferol (p < 0.0001). Using linear regression we determined a curve with 25(OH)D3/cholecalciferol versus normalized Cyp2R1 mRNA abundance with an R2 value of 0.85. Finally, we performed ex vivo activity assays of isolated livers and found that obese mice generated significantly less 25(OH)D3 than lean mice (p < 0.05). Our findings indicate that expression of CYP2R1 is reduced in obesity and accounts in part for the decreased circulating 25(OH)D. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Colestanotriol 26-Monooxigenasa/metabolismo , Hígado/enzimología , Obesidad/sangre , Obesidad/patología , Vitamina D/análogos & derivados , Animales , Peso Corporal/efectos de los fármacos , Calcifediol/farmacología , Colecalciferol/sangre , Colestanotriol 26-Monooxigenasa/genética , Dieta Alta en Grasa , Femenino , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Delgadez/sangre , Vitamina D/sangre
10.
Endocrinology ; 159(8): 3083-3089, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29955863

RESUMEN

The prevalence of vitamin D deficiency, as determined by circulating levels of 25-hydroxycalciferol [25(OH)D], is greater in older individuals compared with the young. To examine the hypothesis that altered production or inactivation of 25(OH)D contributes to lower circulating levels of 25(OH)D, we measured the serum levels of parent vitamin D3 (cholecalciferol) and 25(OH)D. We also determined the relative abundance of transcripts encoding hepatic CYP2R1 and CYP27B1, the principal 25-hydroxylases, transcripts encoding enzymes that degrade 25(OH)D in the liver (Cyp3A11) and kidney (Cyp24A1) and transcripts encoding megalin and cubilin, proteins critical to vitamin D resorption in the kidney in mice at three different ages. We observed a significant decline in the relative abundance of Cyp2R1 in the liver with aging (one-way ANOVA, P = 0.0077). Concurrent with the decrease in mRNA, a significant decline in hepatic CYP2R1 protein (one-way ANOVA for trend, P = 0.007) and 25(OH)D (one-way ANOVA for trend, P = 0.002) and in the ratio of 25(OH)D3 to cholecalciferol (one-way ANOVA, P = 0.0003). By contrast, levels of the transcripts encoding Cyp3a11, Cyp24a1, and Cyp27b1 megalin and cubilin were unchanged with aging. A significant positive correlation was found between Cyp2r1 mRNA and 25(OH)D, and a stronger correlation was found between Cyp2r1 mRNA and the ratio of 25(OH)D3 to cholecalciferol. These results indicate that decreased expression of CYP2R1 contributes to the reduced serum levels of 25(OH)D in aging.


Asunto(s)
Envejecimiento/metabolismo , Colecalciferol/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Citocromo P-450 CYP3A/genética , Riñón/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/genética , Deficiencia de Vitamina D/metabolismo , Vitamina D3 24-Hidroxilasa/genética , Vitamina D/análogos & derivados , Animales , Colestanotriol 26-Monooxigenasa/metabolismo , Citocromo P-450 CYP3A/metabolismo , Expresión Génica , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilasa/metabolismo
11.
J Endocr Soc ; 1(8): 1041-1055, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29264556

RESUMEN

The paraventricular nucleus (PVN) is a critical locus of energy balance control. Three sets of neurons in the PVN are involved in regulating energy balance: oxytocin-expressing neurons (OXT-neurons), thyrotropin-releasing hormone-expressing neurons, and corticotrophin-releasing hormone-expressing neurons. To examine the role of OXT-neurons in energy balance, we ablated these neurons in mice by injecting diphtheria toxin into mice possessing both the oxytocin promoter driving cre expression and a cre-inducible diphtheria toxin receptor. Immunohistochemistry and real-time reverse transcriptase polymerase chain reaction confirmed that this injection caused a significant decrease in PVN OXT-neurons and OXT-mRNA abundance. OXT-neuron ablation did not alter food intake, weight, or energy expenditure at room temperature on either chow or a high-fat diet. To further characterize OXT-neuron-ablated mice, we examined their response to 1) intraperitoneal cholecystokinin (CCK) injection and 2) thermogenic stress. OXT-neuron-ablated mice had a blunted decrease in feeding response to CCK. When exposed to the extreme cold (4°C) for 3 hours, OXT-neuron-ablated mice had significant decreases in both rectal and brown adipose tissue temperature relative to controls, which was rescued by OXT treatment. Thermographic imaging revealed that OXT-neuron-ablated mice had increased body surface temperature. Thus, we report that OXT-neuron ablation shows no role for OXT-neurons in energy homeostasis at neutral temperature but reveals a heretofore unappreciated role for OXT-neurons and oxytocin specifically in regulating the thermogenic stress response.

12.
J Clin Endocrinol Metab ; 101(3): 880-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26709970

RESUMEN

CONTEXT: Pseudohypoparathyroidism type 1A (PHP1A) is caused by loss-of-function mutations on the maternally inherited GNAS allele and is associated with early-onset obesity, neurocognitive defects, and resistance to multiple hormones. The role of energy intake vs central regulation of energy expenditure in the pathophysiology of obesity remains unclear. OBJECTIVE: The aim of this study was to evaluate resting energy expenditure (REE) in participants with PHP1A. DESIGN: We assessed REE, biochemical, endocrine, and auxological status of 12 participants with PHP1A who had normal or elevated body mass index; controls were a cohort of 156 obese participants. SETTING: This study took place at Children's Hospital in Philadelphia and Sick Children's Hospital in Toronto. MAIN OUTCOME MEASURES: REE as a percent of predicted REE was the outcome measure. RESULTS: PHP1A participants had normal endocrine status while receiving appropriate hormone replacement therapy, but had significantly decreased REE as a percent of predicted REE (using the modified Schofield equation). CONCLUSION: Our results are consistent with REE being the principal cause of obesity in PHP1A rather than it being caused by excessive energy intake or endocrine dysfunction.


Asunto(s)
Metabolismo Energético , Seudohipoparatiroidismo/metabolismo , Adolescente , Adulto , Composición Corporal , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
Genome Res ; 22(12): 2328-38, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22968929

RESUMEN

L1 retrotransposons comprise 17% of the human genome and are its only autonomous mobile elements. Although L1-induced insertional mutagenesis causes Mendelian disease, their mutagenic load in cancer has been elusive. Using L1-targeted resequencing of 16 colorectal tumor and matched normal DNAs, we found that certain cancers were excessively mutagenized by human-specific L1s, while no verifiable insertions were present in normal tissues. We confirmed de novo L1 insertions in malignancy by both validating and sequencing 69/107 tumor-specific insertions and retrieving both 5' and 3' junctions for 35. In contrast to germline polymorphic L1s, all insertions were severely 5' truncated. Validated insertion numbers varied from up to 17 in some tumors to none in three others, and correlated with the age of the patients. Numerous genes with a role in tumorigenesis were targeted, including ODZ3, ROBO2, PTPRM, PCM1, and CDH11. Thus, somatic retrotransposition may play an etiologic role in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/genética , Elementos de Nucleótido Esparcido Largo/genética , Retroelementos/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Metilación , Inestabilidad de Microsatélites , Mutagénesis Insercional , Fenotipo , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...