Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Neurosci Biobehav Rev ; 161: 105690, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678736

RESUMEN

Dopamine's role in addiction has been extensively studied, revealing disruptions in its functioning throughout all addiction stages. Neuromelanin in the substantia nigra (SN) may reflect dopamine auto-oxidation, and can be quantified using neuromelaninsensitive magnetic resonance imaging (neuromelanin-MRI) in a non-invasive manner.In this pre-registered systematic review, we assess the current body of evidence related to neuromelanin levels in substance use disorders, using both post-mortem and MRI examinations. The systematic search identified 10 relevant articles, primarily focusing on the substantia nigra. An early-stage meta-analysis (n = 6) revealed varied observations ranging from standardized mean differences of -3.55 to +0.62, with a pooled estimate of -0.44 (95 % CI = -1.52, 0.65), but there was insufficient power to detect differences in neuromelanin content among individuals with substance use disorders. Our gap analysis highlights the lack of sufficient replication studies, with existing studies lacking the power to detect a true difference, and a complete lack of neuromelanin studies on certain substances of clinical interest. We provide recommendations for future studies of dopaminergic neurobiology in addictions and related psychiatric comorbidities.


Asunto(s)
Melaninas , Trastornos Relacionados con Sustancias , Humanos , Melaninas/metabolismo , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/diagnóstico por imagen , Sustancia Negra/metabolismo , Sustancia Negra/diagnóstico por imagen , Imagen por Resonancia Magnética
3.
Am J Psychiatry ; 181(6): 512-519, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38476044

RESUMEN

OBJECTIVE: Markers for treatment resistance in schizophrenia are needed to reduce delays in effective treatment. Nigrostriatal hyperdopaminergic function plays a critical role in the pathology of schizophrenia, yet antipsychotic nonresponders do not show increased dopamine function. Neuromelanin-sensitive MRI (NM-MRI), which indirectly measures dopamine function in the substantia nigra, has potential as a noninvasive marker for nonresponders. Increased NM-MRI signal has been shown in psychosis, but has not yet been assessed in nonresponders. In this study, the authors investigated whether nonresponders show lower NM-MRI signal than responders. METHODS: NM-MRI scans were acquired in 79 patients with first-episode psychosis and 20 matched healthy control subjects. Treatment response was assessed at a 6-month follow-up. An a priori voxel-wise analysis within the substantia nigra tested the relation between NM-MRI signal and treatment response in patients. RESULTS: Fifteen patients were classified as nonresponders and 47 patients as responders. Seventeen patients were excluded, primarily because of medication nonadherence or change in diagnosis. Voxel-wise analysis revealed 297 significant voxels in the ventral tier of the substantia nigra that were negatively associated with treatment response. Nonresponders and healthy control subjects had significantly lower NM-MRI signal than responders. Receiver operating characteristic curve analysis showed that NM-MRI signal separated nonresponders with areas under the curve between 0.62 and 0.85. In addition, NM-MRI signal in patients did not change over 6 months. CONCLUSIONS: These findings provide further evidence for dopaminergic differences between medication responders and nonresponders and support the potential of NM-MRI as a clinically applicable marker for treatment resistance in schizophrenia.


Asunto(s)
Antipsicóticos , Biomarcadores , Imagen por Resonancia Magnética , Melaninas , Sustancia Negra , Humanos , Masculino , Melaninas/metabolismo , Imagen por Resonancia Magnética/métodos , Femenino , Adulto , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/metabolismo , Antipsicóticos/uso terapéutico , Biomarcadores/metabolismo , Esquizofrenia Resistente al Tratamiento/tratamiento farmacológico , Esquizofrenia Resistente al Tratamiento/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/metabolismo , Adulto Joven , Estudios de Casos y Controles , Dopamina/metabolismo
4.
Biol Psychiatry ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38296219

RESUMEN

BACKGROUND: The complex neurobiology of posttraumatic stress disorder (PTSD) calls for the characterization of specific disruptions in brain functions that require targeted treatment. One such alteration could be an overactive locus coeruleus (LC)-norepinephrine system, which may be linked to hyperarousal symptoms, a characteristic and burdensome aspect of the disorder. METHODS: Study participants were Canadian Armed Forces veterans with PTSD related to deployment to combat zones (n = 34) and age- and sex-matched healthy control participants (n = 32). Clinical measures included the Clinician-Administered PTSD Scale for DSM-5, and neuroimaging measures included a neuromelanin-sensitive magnetic resonance imaging scan to measure the LC signal. Robust linear regression analyses related the LC signal to clinical measures. RESULTS: Compared with control participants, the LC signal was significantly elevated in the PTSD group (t62 = 2.64, p = .010), and this group difference was most pronounced in the caudal LC (t56 = 2.70, Cohen's d = 0.72). The caudal LC signal was also positively correlated with the severity of Clinician-Administered PTSD Scale for DSM-5 hyperarousal symptoms in the PTSD group (t26 = 2.16, p = .040). CONCLUSIONS: These findings are consistent with a growing body of evidence indicative of elevated LC-norepinephrine system function in PTSD. Furthermore, they indicate the promise of neuromelanin-sensitive magnetic resonance imaging as a noninvasive method to probe the LC-norepinephrine system that has the potential to support subtyping and treatment of PTSD or other neuropsychiatric conditions.

5.
Hum Brain Mapp ; 44(9): 3913-3925, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37126580

RESUMEN

Following the development of magnetic resonance imaging (MRI) methods to assay the integrity of catecholamine nuclei, including the locus coeruleus (LC), there has been an effort to develop automated methods that can accurately segment this small structure in an automated manner to promote its widespread use and overcome limitations of manual segmentation. Here we characterize an automated LC segmentation approach (referred to as the funnel-tip [FT] method) in healthy individuals and individuals with LC degeneration in the context of Alzheimer's disease (AD, confirmed with tau-PET imaging using [18F]MK6240). The first sample included n = 190 individuals across the AD spectrum from cognitively normal to moderate AD. LC signal assayed with FT segmentation showed excellent agreement with manual segmentation (intraclass correlation coefficient [ICC] = 0.91). Compared to other methods, the FT method showed numerically higher correlation to AD status (defined by presence of tau: Cohen's d = 0.64) and AD severity (Braak stage: Pearson R = -.35, cognitive function: R = .25). In a separate sample of n = 12 control participants, the FT method showed excellent scan-rescan reliability (ICC = 0.82). In another sample of n = 30 control participants, we found that the structure of the LC defined by FT segmentation approximated its expected shape as a contiguous line: <5% of LC voxels strayed >1 voxel (0.69 mm) from this line. The FT LC segmentation shows high agreement with manual segmentation and captures LC degeneration in AD. This practical method may facilitate larger research studies of the human LC-norepinephrine system and has potential to support future use of neuromelanin-sensitive MRI as a clinical biomarker.


Asunto(s)
Enfermedad de Alzheimer , Locus Coeruleus , Humanos , Locus Coeruleus/diagnóstico por imagen , Reproducibilidad de los Resultados , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética/métodos , Norepinefrina
6.
J Magn Reson Imaging ; 58(1): 294-300, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36373996

RESUMEN

BACKGROUND: The integrity and function of catecholamine neurotransmitter systems can be assessed using neuromelanin-sensitive MRI (NM-MRI). The relevance of this method to neurodegenerative and psychiatric disorders is becoming increasingly evident, and it has potential as a clinical biomarker. PURPOSE: To support future application of NM-MRI as a clinical biomarker by defining the normative range of NM-MRI signal and volume metrics in cognitively normal older adults. STUDY TYPE: Prospective. POPULATION: A total of 152 cognitively normal older adults aged 53-86 years old, including 41 participants who had follow-up NM-MRI data collected 9-16 months later. FIELD STRENGTH/SEQUENCE: A 3.0 T; NM-MRI turbo spin echo and T1-weighted magnetization-prepared rapid acquisition with gradient echo sequences. ASSESSMENT: NM-MRI images were processed to yield summary measures of volume and signal (contrast-to-noise ratio, CNR) for the substantia nigra (SN) and locus coeruleus (LC) using a recently developed software employing a fully automated algorithm. Change in these metrics over time was also assessed. STATISTICAL TESTS: Mean and standard deviation of NM-MRI metrics were calculated; change over time was tested for significance using 1-sample t-tests. P values < 0.05 were considered statistically significant. RESULTS: At baseline SN signal (CNR) was 10.02% (left) and 10.28% (right) and LC signal was 24.71% (left) and 20.42% (right). Baseline SN volume was 576 mm3 (left) and 540 mm3 (right) and LC volume was 6.31 mm3 (left) and 6.30 mm3 (right). The only NM-MRI metric showing significant change was a decrease in left SN volume (t40  = -2.57, P = 0.014). DATA CONCLUSION: We report normative values for NM-MRI signal and volume in the SN and LC of cognitively normal older adults and explore their change over time. These values may help future efforts to use NM-MRI as a clinical biomarker by facilitating identification of patients with extreme NM-MRI values. TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Enfermedad de Parkinson , Humanos , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Sustancia Negra/diagnóstico por imagen , Biomarcadores
7.
Neuroimage Clin ; 36: 103182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36088841

RESUMEN

Late-life depression (LLD) is a risk factor for age-dependent cognitive deterioration. Norepinephrine-related degeneration in the locus coeruleus (LC) may explain this link. To examine the LC norepinephrine system in vivo, we acquired neuromelanin-sensitive MRI (NM-MRI) in a sample of 48 participants, including 25 with LLD (18 women, age 68.08 ± 5.41) and 23 never-depressed comparison participants (ND, 12 women, age 70 ± 8.02), matched on age and cognitive status. We employed a semi-automated procedure to segment the LC into three bilateral sections along its rostro-caudal extent, and calculated relative contrast as a proxy of integrity. Then, we examined associations between integrity and LLD diagnosis, age, and cognition, as measured via the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Delis-Kaplan Executive Function System (D-KEFS). We did not identify an effect of LLD diagnosis nor age on LC integrity, but exploratory canonical correlation analysis across the combined participant sample revealed a strong (Rc = 0.853) and significant multivariate relationship between integrity and cognition (Wilks' λ = 0.03, F(84, 162.44) = 1.66, p = <.01). The first and only significant variate explained 72.83% model variance, and linked better attention and delayed memory performance, faster processing speed, and lower verbal fluency performance with higher integrity in the right rostral but lower integrity in the left caudal LC. Our results complement prior evidence of LC involvement in cognition in healthy older adults, and extend this association to individuals with LLD.


Asunto(s)
Trastornos del Conocimiento , Locus Coeruleus , Humanos , Femenino , Anciano , Persona de Mediana Edad , Locus Coeruleus/diagnóstico por imagen , Trastornos del Conocimiento/etiología , Atención , Cognición , Imagen por Resonancia Magnética/métodos , Norepinefrina
8.
Brain Sci ; 12(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35326308

RESUMEN

Perturbations in dopamine system function may increase risk of substance use disorder (SUD). We recently demonstrated that neuromelanin (NM) MRI signal in the substantia nigra, a non-invasive index of dopamine system function, is elevated in long term cocaine users (Cassidy et al., 2020). However, it is unclear whether elevated NM-MRI signal is linked to risk of SUD, or is a byproduct of long-term drug use. Our prior work failed to show relations between NM-MRI signal and functional engagement of ventral striatum during a monetary reward task. However, social experiences are commonly linked to drug use and relapse. Given that, NM-MRI signal may be more closely linked to ventral striatal engagement during social, rather than monetary reward processing. Emerging adults (n = 33, 21.88 ± 4.35 years) with varying levels of substance abuse, but without SUD, underwent NM-MRI and fMRI during social and monetary reward processing tasks. Voxelwise analysis within the substantia nigra (SN) demonstrated lower NM-MRI signal was associated with more severe substance abuse. Lower right ventral striatal engagement to social reward was also associated with more severe substance abuse. This relation was moderated by SN NM-MRI signal such that diminished striatal response to reward was associated with greater substance abuse among those with low NM-MRI signal, but lower substance abuse among those with high NM-MRI signal. Unexpectedly, higher right ventral striatal engagement during monetary reward was associated with more severe substance abuse. This relation was moderated by SN NM-MRI signal such that greater striatal response to reward was associated with greater substance abuse among those with low NM-MRI signal. Taken together, we provide preliminary evidence that, in emerging adults, low rather than high dopamine system function may increase risk of substance abuse, and strengthen the association between substance use and the brain's sensitivity to social and monetary outcomes in different ways.

9.
Schizophrenia (Heidelb) ; 8(1): 6, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217662

RESUMEN

Patients with schizophrenia have a high prevalence of cigarette smoking and respond poorly to conventional treatments, highlighting the need for new therapies. We conducted a mechanistic, proof-of-concept study using bilateral deep repetitive transcranial magnetic stimulation (dTMS) of insular and prefrontal cortices at high frequency, using the specialized H4 coil. Feasibility of dTMS was tested for disruption of tobacco self-administration, insula target engagement, and insula circuit modulation, all of which were a priori outcomes of interest. Twenty patients completed the study, consisting of weekday dTMS sessions (randomization to active dTMS or sham; double-blind; 10 patients per group), a laboratory tobacco self-administration paradigm (pre/post assessments), and multimodal imaging (three MRI total sessions). Results showed that participants assigned to active dTMS were slower to initiate smoking their first cigarette compared with sham, consistent with smoking disruption. The imaging analyses did not reveal significant Time × Group interactions, but effects were in the anticipated directions. In arterial spin labeling analyses testing for target engagement, an overall decrease in insula blood flow, measured during a post-treatment MRI versus baseline, was numerically more pronounced in the active dTMS group than sham. In fMRI analyses, resting-state connectivity between the insula and default mode network showed a numerically greater change from baseline in the active dTMS group than sham, consistent with a functional change to insula circuits. Exploratory analyses further suggested a therapeutic effect of dTMS on symptoms of psychosis. These initial observations pave the way for future confirmatory studies of dTMS in smoking patients with schizophrenia.

10.
Neuropsychopharmacology ; 47(5): 1128-1136, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35177805

RESUMEN

The clinical and pathophysiological correlates of locus coeruleus (LC) degeneration in Alzheimer's disease (AD) could be clarified using a method to index LC integrity in vivo, neuromelanin-sensitive MRI (NM-MRI). We examined whether integrity of the LC-norepinephrine system, assessed with NM-MRI, is associated with stage of AD and with neuropsychiatric symptoms (NPS), independent of cortical pathophysiology (amyloid-ß and tau burden). Cognitively normal older adults (n = 118), and individuals with mild cognitive impairment (MCI, n = 44), and AD (n = 28) underwent MR imaging and tau and amyloid-ß positron emission tomography (with [18F]MK6240 and [18F]AZD4694, respectively). Integrity of the LC-norepinephrine system was assessed based on contrast-to-noise ratio of the LC on NM-MRI images. Braak stage of AD was derived from regional binding of [18F]MK6240. NPS were assessed with the Mild Behavioral Impairment Checklist (MBI-C). LC signal contrast was decreased in tau-positive participants (t186 = -4.00, p = 0.0001) and negatively correlated to Braak stage (Spearman ρ = -0.31, p = 0.00006). In tau-positive participants (n = 51), higher LC signal predicted NPS severity (ρ = 0.35, p = 0.019) independently of tau burden, amyloid-ß burden, and cortical gray matter volume. This relationship appeared to be driven by the impulse dyscontrol domain of NPS, which was highly correlated to LC signal (ρ = 0.44, p = 0.0027). NM-MRI reveals loss of LC integrity that correlates to severity of AD. However, LC preservation in AD may also have negative consequences by conferring risk for impulse control symptoms. NM-MRI shows promise as a practical biomarker that could have utility in predicting the risk of NPS or guiding their treatment in AD.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Humanos , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/metabolismo , Norepinefrina/metabolismo , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo
11.
Neurosci Biobehav Rev ; 132: 1205-1213, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718049

RESUMEN

Although schizophrenia is associated with increased presynaptic dopamine function in the striatum, it remains unclear if neuromelanin levels, which are thought to serve as a biomarker for midbrain dopamine neuron function, are increased in patients with schizophrenia. We conducted a systematic review and meta-analysis of magnetic resonance imaging (MRI) and postmortem studies comparing neuromelanin (NM) levels between patients with schizophrenia and healthy controls (HCs). Standard mean differences were calculated to assess group differences in NM accumulation levels between patients with schizophrenia and HCs. This study included 7 articles in total. Five studies employed NM-sensitive MRI (NM-MRI) and two were postmortem brain studies. The patient group (n = 163) showed higher NM levels in the substantia nigra (SN) than HCs (n = 228) in both the analysis of the seven studies and the subgroup analysis of the 5 NM-MRI studies. This analysis suggest increased NM levels in the SN may be a potential biomarker for stratifying schizophrenia, warranting further research that accounts for the heterogeneity of this disorder.


Asunto(s)
Esquizofrenia , Humanos , Imagen por Resonancia Magnética/métodos , Melaninas , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/patología
14.
Artículo en Inglés | MEDLINE | ID: mdl-33524600

RESUMEN

BACKGROUND: Associative learning and memory processes, including the generalization of previously learned associations, may be altered in schizophrenia. Deficits in schizophrenia in stimulus generalization, one of the simplest forms of memory, could interfere with the ability to efficiently categorize related, similar information, potentially leading to impairments in daily functioning. METHODS: To measure generalization in schizophrenia, 37 individuals with a nonaffective psychotic disorder and 32 demographically matched healthy control subjects underwent a Pavlovian fear conditioning and generalization procedure, which accounted for variation in perceptual ability across participants, while undergoing functional magnetic resonance imaging. Skin conductance and neural responses to conditioned (CS+), neutral (CS-), and generalization stimuli were measured. Explicit memory ratings reflecting successful generalization were also collected after the scanning, as well as measures of symptom severity. RESULTS: Compared with healthy control subjects, individuals with nonaffective psychotic disorders showed significant deficits in fear generalization across multiple measurements, with impairments in memory ratings and reductions in activation and deactivation of the salience and default networks, respectively, during fear generalization. Moreover, in the psychotic disorder group, greater behavioral and neural abnormalities in generalization were associated with higher levels of negative symptoms. CONCLUSIONS: Fear generalization is impaired in psychotic illness. Given that successful generalization relies on a dynamic balance between excitatory and inhibitory neurotransmission, these results reveal a potentially quantifiable mechanism linked to negative symptoms that can be investigated further in future human and experimental animal studies.


Asunto(s)
Esquizofrenia , Animales , Condicionamiento Clásico/fisiología , Miedo/fisiología , Generalización Psicológica/fisiología , Humanos , Imagen por Resonancia Magnética/métodos
15.
Neuropsychopharmacology ; 46(7): 1233-1239, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32919398

RESUMEN

Late-life depression (LLD) is a prevalent and disabling condition in older adults that is often accompanied by slowed processing and gait speed. These symptoms are related to impaired dopamine function and sometimes remedied by levodopa (L-DOPA). In this study, we recruited 33 older adults with LLD to determine the association between a proxy measure of dopamine function-neuromelanin-sensitive magnetic resonance imaging (NM-MRI)-and baseline slowing measured by the Digit Symbol test and a gait speed paradigm. In secondary analyses, we also assessed the ability of NM-MRI to predict L-DOPA treatment response in a subset of these patients (N = 15) who received 3 weeks of L-DOPA. We scanned a further subset of these patients (N = 6) with NM-MRI at baseline and after treatment to preliminarily evaluate the effects of L-DOPA treatment on the NM-MRI signal. We found that lower baseline NM-MRI correlated with slower baseline gait speed (346 of 1807 substantia nigra-ventral tegmental area (SN-VTA) voxels, Pcorrected = 0.038), particularly in the more medial, anterior, and dorsal SN-VTA. Secondary analyses failed to show an association between baseline NM-MRI and treatment-related changes in gait speed, processing speed, or depression severity (all Pcorrected > 0.361); we however found preliminary evidence of increases in the NM-MRI signal 3 weeks post-treatment with L-DOPA compared to baseline (200 of 1807 SN-VTA voxels; Pcorrected = 0.046), although the small sample size of these preliminary analyses warrants caution in their interpretation and future replications. Overall, our findings indicate that NM-MRI is sensitive to variability in gait speed in patients with LLD, suggesting this non-invasive MRI measure may provide a promising marker for dopamine-related psychomotor slowing in geriatric neuropsychiatry.


Asunto(s)
Depresión , Melaninas , Anciano , Depresión/diagnóstico por imagen , Depresión/tratamiento farmacológico , Humanos , Imagen por Resonancia Magnética , Sustancia Negra
16.
Am J Psychiatry ; 177(11): 1038-1047, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32854531

RESUMEN

OBJECTIVE: Recent evidence supports the use of neuromelanin-sensitive MRI (NM-MRI) as a novel tool to investigate dopamine function in the human brain. The authors investigated the NM-MRI signal in individuals with cocaine use disorder, compared with age- and sex-matched control subjects, based on previous imaging studies showing that this disorder is associated with blunted presynaptic striatal dopamine. METHODS: NM-MRI and T1-weighted images were acquired from 20 participants with cocaine use disorder and 35 control subjects. Diagnostic group effects in NM-MRI signal were determined using a voxelwise analysis within the substantia nigra. A subset of 20 cocaine users and 17 control subjects also underwent functional MRI imaging using the monetary incentive delay task, in order to investigate whether NM-MRI signal was associated with alterations in reward processing. RESULTS: Compared with control subjects, cocaine users showed significantly increased NM-MRI signal in ventrolateral regions of the substantia nigra (area under the receiver operating characteristic curve=0.83). Exploratory analyses did not find a significant correlation of NM-MRI signal to activation of the ventral striatum during anticipation of monetary reward. CONCLUSIONS: Given that previous imaging studies show decreased dopamine signaling in the striatum, the finding of increased NM-MRI signal in the substantia nigra provides additional insight into the pathophysiology of cocaine use disorder. One interpretation is that cocaine use disorder is associated with a redistribution of dopamine between cytosolic and vesicular pools, leading to increased accumulation of neuromelanin. The study findings thus suggest that NM-MRI can serve as a practical imaging tool for interrogating the dopamine system in addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/patología , Dopamina/metabolismo , Melaninas/metabolismo , Neuroimagen/métodos , Sustancia Negra/patología , Anticipación Psicológica , Estudios de Casos y Controles , Trastornos Relacionados con Cocaína/diagnóstico por imagen , Trastornos Relacionados con Cocaína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recompensa , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/metabolismo , Estriado Ventral/metabolismo , Estriado Ventral/patología
17.
Proc Natl Acad Sci U S A ; 116(11): 5108-5117, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30796187

RESUMEN

Neuromelanin-sensitive MRI (NM-MRI) purports to detect the content of neuromelanin (NM), a product of dopamine metabolism that accumulates with age in dopamine neurons of the substantia nigra (SN). Interindividual variability in dopamine function may result in varying levels of NM accumulation in the SN; however, the ability of NM-MRI to measure dopamine function in nonneurodegenerative conditions has not been established. Here, we validated that NM-MRI signal intensity in postmortem midbrain specimens correlated with regional NM concentration even in the absence of neurodegeneration, a prerequisite for its use as a proxy for dopamine function. We then validated a voxelwise NM-MRI approach with sufficient anatomical sensitivity to resolve SN subregions. Using this approach and a multimodal dataset of molecular PET and fMRI data, we further showed the NM-MRI signal was related to both dopamine release in the dorsal striatum and resting blood flow within the SN. These results suggest that NM-MRI signal in the SN is a proxy for function of dopamine neurons in the nigrostriatal pathway. As a proof of concept for its clinical utility, we show that the NM-MRI signal correlated to severity of psychosis in schizophrenia and individuals at risk for schizophrenia, consistent with the well-established dysfunction of the nigrostriatal pathway in psychosis. Our results indicate that noninvasive NM-MRI is a promising tool that could have diverse research and clinical applications to investigate in vivo the role of dopamine in neuropsychiatric illness.


Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Imagen por Resonancia Magnética , Melaninas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Medios de Contraste , Femenino , Humanos , Masculino , Mesencéfalo/metabolismo , Persona de Mediana Edad , Cambios Post Mortem , Trastornos Psicóticos/diagnóstico por imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido , Sustancia Negra/metabolismo
18.
Curr Biol ; 28(4): 503-514.e4, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29398218

RESUMEN

Hallucinations, a cardinal feature of psychotic disorders such as schizophrenia, are known to depend on excessive striatal dopamine. However, an underlying cognitive mechanism linking dopamine dysregulation and the experience of hallucinatory percepts remains elusive. Bayesian models explain perception as an optimal combination of prior expectations and new sensory evidence, where perceptual distortions such as illusions and hallucinations may occur if prior expectations are afforded excessive weight. Such excessive weight of prior expectations, in turn, could stem from a gain-control process controlled by neuromodulators such as dopamine. To test for such a dopamine-dependent gain-control mechanism of hallucinations, we studied unmedicated patients with schizophrenia with varying degrees of hallucination severity and healthy individuals using molecular imaging with a pharmacological manipulation of dopamine, structural imaging, and a novel task designed to measure illusory changes in the perceived duration of auditory stimuli under different levels of uncertainty. Hallucinations correlated with a perceptual bias, reflecting disproportional gain on expectations under uncertainty. This bias could be pharmacologically induced by amphetamine, strongly correlated with striatal dopamine release, and related to cortical volume of the dorsal anterior cingulate, a brain region involved in tracking environmental uncertainty. These findings outline a novel dopamine-dependent mechanism for perceptual modulation in physiological conditions and further suggest that this mechanism may confer vulnerability to hallucinations in hyper-dopaminergic states underlying psychosis.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dopamina/fisiología , Alucinaciones/fisiopatología , Adulto , Teorema de Bayes , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Dopamina/farmacología , Femenino , Giro del Cíngulo/efectos de los fármacos , Humanos , Ilusiones/fisiología , Ilusiones/psicología , Masculino , Percepción/fisiología , Distorsión de la Percepción/fisiología , Trastornos Psicóticos/fisiopatología , Esquizofrenia/fisiopatología
19.
JAMA Psychiatry ; 73(8): 862-70, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27145361

RESUMEN

IMPORTANCE: Despite the well-established role of striatal dopamine in psychosis, current views generally agree that cortical dysfunction is likely necessary for the emergence of psychotic symptoms. The topographic organization of striatal-cortical connections is central to gating and integration of higher-order information, so a disruption of such topography via dysregulated dopamine could lead to cortical dysfunction in schizophrenia. However, this hypothesis remains to be tested using multivariate methods ascertaining the global pattern of striatal connectivity and without the confounding effects of antidopaminergic medication. OBJECTIVES: To examine whether the pattern of brain connectivity across striatal subregions is abnormal in unmedicated patients with schizophrenia and whether this abnormality relates to psychotic symptoms and extrastriatal dopaminergic transmission. DESIGN, SETTING, AND PARTICIPANTS: In this multimodal, case-control study, we obtained resting-state functional magnetic resonance imaging data from 18 unmedicated patients with schizophrenia and 24 matched healthy controls from the New York State Psychiatric Institute. A subset of these (12 and 17, respectively) underwent positron emission tomography with the dopamine D2 receptor radiotracer carbon 11-labeled FLB457 before and after amphetamine administration. Data were acquired between June 16, 2011, and February 25, 2014. Data analysis was performed from September 1, 2014, to January 11, 2016. MAIN OUTCOMES AND MEASURES: Group differences in the striatal connectivity pattern (assessed via multivariable logistic regression) across striatal subregions, the association between the multivariate striatal connectivity pattern and extrastriatal baseline D2 receptor binding potential and its change after amphetamine administration, and the association between the multivariate connectivity pattern and the severity of positive symptoms evaluated with the Positive and Negative Syndrome Scale. RESULTS: Of the patients with schizophrenia (mean [SEM] age, 35.6 [11.8] years), 9 (50%) were male and 9 (50%) were female. Of the controls (mean [SEM] age, 33.7 [8.8] years), 10 (42%) were male and 14 (58%) were female. Patients had an abnormal pattern of striatal connectivity, which included abnormal caudate connections with a distributed set of associative cortex regions (χ229 = 53.55, P = .004). In patients, more deviation from the multivariate pattern of striatal connectivity found in controls correlated specifically with more severe positive symptoms (ρ = -0.77, P = .002). Striatal connectivity also correlated with baseline binding potential across cortical and extrastriatal subcortical regions (t25 = 3.01, P = .01, Bonferroni corrected) but not with its change after amphetamine administration. CONCLUSIONS AND RELEVANCE: Using a multimodal, circuit-level interrogation of striatal-cortical connections, it was demonstrated that the functional topography of these connections is globally disrupted in unmedicated patients with schizophrenia. These findings suggest that striatal-cortical dysconnectivity may underlie the effects of dopamine dysregulation on the pathophysiologic mechanism of psychotic symptoms.


Asunto(s)
Cuerpo Estriado/fisiopatología , Dopamina/fisiología , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Adulto , Mapeo Encefálico , Estudios de Casos y Controles , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Escalas de Valoración Psiquiátrica , Receptores de Dopamina D2/fisiología , Estadística como Asunto , Transmisión Sináptica/fisiología
20.
J Neurosci ; 36(15): 4377-88, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27076432

RESUMEN

Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE STATEMENT: It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior.


Asunto(s)
Dopamina/metabolismo , Memoria a Corto Plazo , Red Nerviosa/fisiopatología , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Adulto , Femenino , Lóbulo Frontal/fisiopatología , Humanos , Individualidad , Imagen por Resonancia Magnética , Masculino , Lóbulo Parietal/fisiopatología , Tomografía de Emisión de Positrones , Desempeño Psicomotor , Pirrolidinas , Radiofármacos , Salicilamidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...