Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(3): e1011518, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38551976

RESUMEN

PGT121 is a broadly neutralizing antibody in clinical development for the treatment and prevention of HIV-1 infection via passive administration. PGT121 targets the HIV-1 V3-glycan and demonstrated potent antiviral activity in a phase I clinical trial. Resistance to PGT121 monotherapy rapidly occurred in the majority of participants in this trial with the sampled rebound viruses being entirely resistant to PGT121 mediated neutralization. However, two individuals experienced long-term ART-free viral suppression following antibody infusion and retained sensitivity to PGT121 upon viral rebound. Here, we develop mathematical models of the HIV-1 dynamics during this phase I clinical trial. We utilize these models to understand the dynamics leading to PGT121 resistance and to identify the mechanisms driving the observed long-term viral control. Our modeling highlights the importance of the relative fitness difference between PGT121 sensitive and resistant subpopulations prior to treatment. Specifically, by fitting our models to data, we identify the treatment-induced competitive advantage of previously existing or newly generated resistant population as a primary driver of resistance. Finally, our modeling emphasizes the high neutralization ability of PGT121 in both participants who exhibited long-term viral control.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Modelos Teóricos
2.
Bull Math Biol ; 85(10): 90, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650951

RESUMEN

Estimating model parameters is a crucial step in mathematical modelling and typically involves minimizing the disagreement between model predictions and experimental data. This calibration data can change throughout a study, particularly if modelling is performed simultaneously with the calibration experiments, or during an on-going public health crisis as in the case of the COVID-19 pandemic. Consequently, the optimal parameter set, or maximal likelihood estimator (MLE), is a function of the experimental data set. Here, we develop a numerical technique to predict the evolution of the MLE as a function of the experimental data. We show that, when considering perturbations from an initial data set, our approach is significantly more computationally efficient that re-fitting model parameters while producing acceptable model fits to the updated data. We use the continuation technique to develop an explicit functional relationship between fit model parameters and experimental data that can be used to measure the sensitivity of the MLE to experimental data. We then leverage this technique to select between model fits with similar information criteria, a priori determine the experimental measurements to which the MLE is most sensitive, and suggest additional experiment measurements that can resolve parameter uncertainty.


Asunto(s)
COVID-19 , Modelos Biológicos , Humanos , Pandemias , COVID-19/epidemiología , Conceptos Matemáticos , Calibración
3.
Sci Rep ; 12(1): 14210, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35988008

RESUMEN

Considerable effort has been made to better understand why some people suffer from severe COVID-19 while others remain asymptomatic. This has led to important clinical findings; people with severe COVID-19 generally experience persistently high levels of inflammation, slower viral load decay, display a dysregulated type-I interferon response, have less active natural killer cells and increased levels of neutrophil extracellular traps. How these findings are connected to the pathogenesis of COVID-19 remains unclear. We propose a mathematical model that sheds light on this issue by focusing on cells that trigger inflammation through molecular patterns: infected cells carrying pathogen-associated molecular patterns (PAMPs) and damaged cells producing damage-associated molecular patterns (DAMPs). The former signals the presence of pathogens while the latter signals danger such as hypoxia or lack of nutrients. Analyses show that SARS-CoV-2 infections can lead to a self-perpetuating feedback loop between DAMP expressing cells and inflammation, identifying the inability to quickly clear PAMPs and DAMPs as the main contributor to hyperinflammation. The model explains clinical findings and reveal conditions that can increase the likelihood of desired clinical outcome from treatment administration. In particular, the analysis suggest that antivirals need to be administered early during infection to have an impact on disease severity. The simplicity of the model and its high level of consistency with clinical findings motivate its use for the formulation of new treatment strategies.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Alarminas , Humanos , Inflamación , Moléculas de Patrón Molecular Asociado a Patógenos , SARS-CoV-2 , Índice de Severidad de la Enfermedad
4.
IMA J Appl Math ; 87(6): 1043-1089, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36691452

RESUMEN

Gamma distributed delay differential equations (DDEs) arise naturally in many modelling applications. However, appropriate numerical methods for generic gamma distributed DDEs have not previously been implemented. Modellers have therefore resorted to approximating the gamma distribution with an Erlang distribution and using the linear chain technique to derive an equivalent system of ordinary differential equations (ODEs). In this work, we address the lack of appropriate numerical tools for gamma distributed DDEs in two ways. First, we develop a functional continuous Runge-Kutta (FCRK) method to numerically integrate the gamma distributed DDE without resorting to Erlang approximation. We prove the fourth-order convergence of the FCRK method and perform numerical tests to demonstrate the accuracy of the new numerical method. Nevertheless, FCRK methods for infinite delay DDEs are not widely available in existing scientific software packages. As an alternative approach to solving gamma distributed DDEs, we also derive a hypoexponential approximation of the gamma distributed DDE. This hypoexponential approach is a more accurate approximation of the true gamma distributed DDE than the common Erlang approximation but, like the Erlang approximation, can be formulated as a system of ODEs and solved numerically using standard ODE software. Using our FCRK method to provide reference solutions, we show that the common Erlang approximation may produce solutions that are qualitatively different from the underlying gamma distributed DDE. However, the proposed hypoexponential approximations do not have this limitation. Finally, we apply our hypoexponential approximations to perform statistical inference on synthetic epidemiological data to illustrate the utility of the hypoexponential approximation.

5.
Nat Med ; 27(10): 1718-1724, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34621054

RESUMEN

Human immunodeficiency virus (HIV)-1-specific broadly neutralizing monoclonal antibodies are currently under development to treat and prevent HIV-1 infection. We performed a single-center, randomized, double-blind, dose-escalation, placebo-controlled trial of a single administration of the HIV-1 V3-glycan-specific antibody PGT121 at 3, 10 and 30 mg kg-1 in HIV-uninfected adults and HIV-infected adults on antiretroviral therapy (ART), as well as a multicenter, open-label trial of one infusion of PGT121 at 30 mg kg-1 in viremic HIV-infected adults not on ART (no. NCT02960581). The primary endpoints were safety and tolerability, pharmacokinetics (PK) and antiviral activity in viremic HIV-infected adults not on ART. The secondary endpoints were changes in anti-PGT121 antibody titers and CD4+ T-cell count, and development of HIV-1 sequence variations associated with PGT121 resistance. Among 48 participants enrolled, no treatment-related serious adverse events, potential immune-mediated diseases or Grade 3 or higher adverse events were reported. The most common reactions among PGT121 recipients were intravenous/injection site tenderness, pain and headache. Absolute and relative CD4+ T-cell counts did not change following PGT121 infusion in HIV-infected participants. Neutralizing anti-drug antibodies were not elicited. PGT121 reduced plasma HIV RNA levels by a median of 1.77 log in viremic participants, with a viral load nadir at a median of 8.5 days. Two individuals with low baseline viral loads experienced ART-free viral suppression for ≥168 days following antibody infusion, and rebound viruses in these individuals demonstrated full or partial PGT121 sensitivity. The trial met the prespecified endpoints. These data suggest that further investigation of the potential of antibody-based therapeutic strategies for long-term suppression of HIV is warranted, including in individuals off ART and with low viral load.


Asunto(s)
Antivirales/administración & dosificación , Anticuerpos ampliamente neutralizantes/administración & dosificación , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Adulto , Terapia Antirretroviral Altamente Activa , Antivirales/inmunología , Antivirales/farmacocinética , Anticuerpos ampliamente neutralizantes/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Método Doble Ciego , Femenino , Proteína gp120 de Envoltorio del VIH/antagonistas & inhibidores , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/genética , Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1/patogenicidad , Humanos , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/inmunología , Placebos , Carga Viral/efectos de los fármacos , Carga Viral/inmunología , Adulto Joven
6.
PLoS Comput Biol ; 17(8): e1009348, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460809

RESUMEN

Intra-tumour heterogeneity is a leading cause of treatment failure and disease progression in cancer. While genetic mutations have long been accepted as a primary mechanism of generating this heterogeneity, the role of phenotypic plasticity is becoming increasingly apparent as a driver of intra-tumour heterogeneity. Consequently, understanding the role of this plasticity in treatment resistance and failure is a key component of improving cancer therapy. We develop a mathematical model of stochastic phenotype switching that tracks the evolution of drug-sensitive and drug-tolerant subpopulations to clarify the role of phenotype switching on population growth rates and tumour persistence. By including cytotoxic therapy in the model, we show that, depending on the strategy of the drug-tolerant subpopulation, stochastic phenotype switching can lead to either transient or permanent drug resistance. We study the role of phenotypic heterogeneity in a drug-resistant, genetically homogeneous population of non-small cell lung cancer cells to derive a rational treatment schedule that drives population extinction and avoids competitive release of the drug-tolerant sub-population. This model-informed therapeutic schedule results in increased treatment efficacy when compared against periodic therapy, and, most importantly, sustained tumour decay without the development of resistance.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Humanos , Modelos Biológicos , Procesos Estocásticos
7.
Clin Infect Dis ; 73(8): 1528-1531, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34181706

RESUMEN

Understanding what shapes the latent human immunodeficiency virus type 1 (HIV-1) reservoir is critical for developing strategies for cure. We measured frequency of persistent HIV-1 infection after 5 years of suppressive antiretroviral therapy initiated during chronic infection. Pretreatment CD8+ T-cell activation, nadir CD4 count, and CD4:CD8 ratio predicted reservoir size.


Asunto(s)
Infecciones por VIH , VIH-1 , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos , Infecciones por VIH/tratamiento farmacológico , Humanos , Carga Viral , Latencia del Virus , Replicación Viral
8.
J Immunother Cancer ; 9(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33608375

RESUMEN

BACKGROUND: Immunotherapies, driven by immune-mediated antitumorigenicity, offer the potential for significant improvements to the treatment of multiple cancer types. Identifying therapeutic strategies that bolster antitumor immunity while limiting immune suppression is critical to selecting treatment combinations and schedules that offer durable therapeutic benefits. Combination oncolytic virus (OV) therapy, wherein complementary OVs are administered in succession, offer such promise, yet their translation from preclinical studies to clinical implementation is a major challenge. Overcoming this obstacle requires answering fundamental questions about how to effectively design and tailor schedules to provide the most benefit to patients. METHODS: We developed a computational biology model of combined oncolytic vaccinia (an enhancer virus) and vesicular stomatitis virus (VSV) calibrated to and validated against multiple data sources. We then optimized protocols in a cohort of heterogeneous virtual individuals by leveraging this model and our previously established in silico clinical trial platform. RESULTS: Enhancer multiplicity was shown to have little to no impact on the average response to therapy. However, the duration of the VSV injection lag was found to be determinant for survival outcomes. Importantly, through treatment individualization, we found that optimal combination schedules are closely linked to tumor aggressivity. We predicted that patients with aggressively growing tumors required a single enhancer followed by a VSV injection 1 day later, whereas a small subset of patients with the slowest growing tumors needed multiple enhancers followed by a longer VSV delay of 15 days, suggesting that intrinsic tumor growth rates could inform the segregation of patients into clinical trials and ultimately determine patient survival. These results were validated in entirely new cohorts of virtual individuals with aggressive or non-aggressive subtypes. CONCLUSIONS: Based on our results, improved therapeutic schedules for combinations with enhancer OVs can be studied and implemented. Our results further underline the impact of interdisciplinary approaches to preclinical planning and the importance of computational approaches to drug discovery and development.


Asunto(s)
Neoplasias/terapia , Viroterapia Oncolítica/métodos , Virus Vaccinia/fisiología , Virus de la Estomatitis Vesicular Indiana/fisiología , Simulación por Computador , Humanos , Clasificación del Tumor , Neoplasias/patología , Virus Oncolíticos/fisiología , Medicina de Precisión
9.
Bull Math Biol ; 82(8): 104, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737602

RESUMEN

In spite of the recent focus on the development of novel targeted drugs to treat cancer, cytotoxic chemotherapy remains the standard treatment for the vast majority of patients. Unfortunately, chemotherapy is associated with high hematopoietic toxicity that may limit its efficacy. We have previously established potential strategies to mitigate chemotherapy-induced neutropenia (a lack of circulating neutrophils) using a mechanistic model of granulopoiesis to predict the interactions defining the neutrophil response to chemotherapy and to define optimal strategies for concurrent chemotherapy/prophylactic granulocyte colony-stimulating factor (G-CSF). Here, we extend our analyses to include monocyte production by constructing and parameterizing a model of monocytopoiesis. Using data for neutrophil and monocyte concentrations during chemotherapy in a large cohort of childhood acute lymphoblastic leukemia patients, we leveraged our model to determine the relationship between the monocyte and neutrophil nadirs during cyclic chemotherapy. We show that monocytopenia precedes neutropenia by 3 days, and rationalize the use of G-CSF during chemotherapy by establishing that the onset of monocytopenia can be used as a clinical marker for G-CSF dosing post-chemotherapy. This work therefore has important clinical applications as a comprehensive approach to understanding the relationship between monocyte and neutrophils after cyclic chemotherapy with or without G-CSF support.


Asunto(s)
Modelos Biológicos , Neutropenia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/efectos adversos , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Humanos , Neutropenia/inducido químicamente , Neutropenia/diagnóstico , Neutropenia/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
10.
Math Med Biol ; 37(1): 117-151, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31329873

RESUMEN

We develop and analyse a mathematical model of tumour-immune interaction that explicitly incorporates heterogeneity in tumour cell cycle duration by using a distributed delay differential equation. We derive a necessary and sufficient condition for local stability of the cancer-free equilibrium in which the amount of tumour-immune interaction completely characterizes disease progression. Consistent with the immunoediting hypothesis, we show that decreasing tumour-immune interaction leads to tumour expansion. Finally, by simulating the mathematical model, we show that the strength of tumour-immune interaction determines the long-term success or failure of viral therapy.


Asunto(s)
Modelos Inmunológicos , Neoplasias/inmunología , Neoplasias/terapia , Viroterapia Oncolítica , Ciclo Celular , Simulación por Computador , Citocinas/inmunología , Humanos , Modelos Lineales , Conceptos Matemáticos , Neoplasias/patología , Virus Oncolíticos/fisiología , Fagocitos/inmunología , Microambiente Tumoral/inmunología
11.
PLoS Comput Biol ; 15(11): e1007495, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31774808

RESUMEN

Oncolytic virotherapies, including the modified herpes simplex virus talimogene laherparepvec (T-VEC), have shown great promise as potent instigators of anti-tumour immune effects. The OPTiM trial, in particular, demonstrated the superior anti-cancer effects of T-VEC as compared to systemic immunotherapy treatment using exogenous administration of granulocyte-macrophage colony-stimulating factor (GM-CSF). Theoretically, a combined approach leveraging exogenous cytokine immunotherapy and oncolytic virotherapy would elicit an even greater immune response and improve patient outcomes. However, regimen scheduling of combination immunostimulation and T-VEC therapy has yet to be established. Here, we calibrate a computational biology model of sensitive and resistant tumour cells and immune interactions for implementation into an in silico clinical trial to test and individualize combination immuno- and virotherapy. By personalizing and optimizing combination oncolytic virotherapy and immunostimulatory therapy, we show improved simulated patient outcomes for individuals with late-stage melanoma. More crucially, through evaluation of individualized regimens, we identified determinants of combination GM-CSF and T-VEC therapy that can be translated into clinically-actionable dosing strategies without further personalization. Our results serve as a proof-of-concept for interdisciplinary approaches to determining combination therapy, and suggest promising avenues of investigation towards tailored combination immunotherapy/oncolytic virotherapy.


Asunto(s)
Terapia Combinada/métodos , Biología Computacional/métodos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Simulación por Computador , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Inmunoterapia/métodos , Melanoma/patología , Modelos Teóricos , Viroterapia Oncolítica/métodos , Virus Oncolíticos/patogenicidad , Medicina de Precisión/métodos , Prueba de Estudio Conceptual
12.
Math Biosci Eng ; 16(5): 5419-5450, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31499719

RESUMEN

We use the McKendrick equation with variable ageing rate and randomly distributed mat-uration time to derive a state dependent distributed delay differential equation. We show that the resulting delay differential equation preserves non-negativity of initial conditions and we characterise local stability of equilibria. By specifying the distribution of maturation age, we recover state depen-dent discrete, uniform and gamma distributed delay differential equations. We show how to reduce the uniform case to a system of state dependent discrete delay equations and the gamma distributed case to a system of ordinary differential equations. To illustrate the benefits of these reductions, we convert previously published transit compartment models into equivalent distributed delay differential equations.

13.
J Pharmacokinet Pharmacodyn ; 45(1): 59-77, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29236223

RESUMEN

A comparison of the transit compartment ordinary differential equation modelling approach to distributed and discrete delay differential equation models is studied by focusing on Quartino's extension to the Friberg transit compartment model of myelosuppression, widely relied upon in the pharmaceutical sciences to predict the neutrophil response after chemotherapy, and on a QSP delay differential equation model of granulopoiesis. An extension to the Quartino model is provided by considering a general number of transit compartments and introducing an extra parameter that allows for the decoupling of the maturation time from the production rate of cells. An overview of the well established linear chain technique, used to reformulate transit compartment models with constant transit rates as distributed delay differential equations (DDEs), is then given. A state-dependent time rescaling of the Quartino model is performed to apply the linear chain technique and rewrite the Quartino model as a distributed DDE, yielding a discrete DDE model in a certain parameter limit. Next, stability and bifurcation analyses are undertaken in an effort to situate such studies in a mathematical pharmacology context. We show that both the original Friberg and the Quartino extension models incorrectly define the mean maturation time, essentially treating the proliferative pool as an additional maturation compartment. This misspecification can have far reaching consequences on the development of future models of myelosuppression in PK/PD.


Asunto(s)
Hematopoyesis/efectos de los fármacos , Modelos Biológicos , Neutrófilos/fisiología , Farmacología/métodos , Antineoplásicos/farmacología , Médula Ósea/efectos de los fármacos , Médula Ósea/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Simulación por Computador , Humanos , Neutrófilos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...