Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38168255

RESUMEN

Hidden hearing loss (HHL) is a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked potentials. It has been proposed that HHL contributes to hearing difficulty in noisy environments in people with normal audiometric thresholds, a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, recent research suggests that transient auditory nerve (AN) demyelination may also cause HHL. To test the impact of myelinopathy in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibit the functional hallmarks of HHL, together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. Our results support the hypothesis that mild disruptions of AN myelination can cause HHL, and that heminodal defects contribute to the alterations in action potential amplitudes and latencies seen in these models. Also, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in CMT1A patients might help develop robust clinical tests for HHL, which are currently lacking.

2.
Curr Vasc Pharmacol ; 21(4): 246-256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37349999

RESUMEN

BACKGROUND: We previously reported that endothelins (ETs) regulate tyrosine hydroxylase (TH) activity and expression in the olfactory bulb (OB) of normotensive and hypertensive animals. Applying an ET receptor type A (ETA) antagonist to the brain suggested that endogenous ETs bind to ET receptor type B (ETB) to elicit effects. OBJECTIVE: The aim of the present work was to evaluate the role of central ETB stimulation on the regulation of blood pressure (BP) and the catecholaminergic system in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. METHODS: DOCA-salt hypertensive rats were infused for 7 days with cerebrospinal fluid or IRL-1620 (ETB receptor agonist) through a cannula placed in the lateral brain ventricle. Systolic BP (SBP) and heart rate were recorded by plethysmography. The expression of TH and its phosphorylated forms in the OB were determined by immunoblotting, TH activity by a radioenzymatic assay, and TH mRNA by quantitative real-time polymerase chain reaction. RESULTS: Chronic administration of IRL-1620 decreased SBP in hypertensive rats but not in normotensive animals. Furthermore, the blockade of ETB receptors also decreased TH-mRNA in DOCA-salt rats, but it did not modify TH activity or protein expression. CONCLUSION: These findings suggest that brain ETs through the activation of ETB receptors contribute to SBP regulation in DOCA-salt hypertension. However, the catecholaminergic system in the OB does not appear to be conclusively involved although mRNA TH was reduced. Present and previous findings suggest that in this salt-sensitive animal model of hypertension, the OB contributes to chronic BP elevation.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Ratas , Animales , Acetato de Desoxicorticosterona/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/farmacología , Bulbo Olfatorio/metabolismo , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Presión Sanguínea , Endotelinas/metabolismo , Endotelinas/farmacología , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , ARN Mensajero/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Endotelina-1/farmacología , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo
3.
Aging Cell ; 21(10): e13708, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088647

RESUMEN

Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly. This progressive pathology often has psychological and medical comorbidities, including social isolation, depression, and cognitive decline. Despite ARHL's enormous societal and economic impact, no therapies to prevent or slow its progression exist. Loss of synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs), a.k.a. IHC synaptopathy, is an early event in cochlear aging, preceding neuronal and hair cell loss. To determine if age-related IHC synaptopathy can be prevented, and if this impacts the time-course of ARHL, we tested the effects of cochlear overexpression of neurotrophin-3 (Ntf3) starting at middle age. We chose Ntf3 because this neurotrophin regulates the formation of IHC-SGN synapses in the neonatal period. We now show that triggering Ntf3 overexpression by IHC supporting cells starting in middle age rapidly increases the amplitude of sound-evoked neural potentials compared with age-matched controls, indicating that Ntf3 produces a positive effect on cochlear function when the pathology is minimal. Furthermore, near the end of their lifespan, Ntf3-overexpressing mice have milder ARHL, with larger sound-evoked potentials along the ascending auditory pathway and reduced IHC synaptopathy compared with age-matched controls. Our results also provide evidence that an age-related decrease in cochlear Ntf3 expression contributes to ARHL and that Ntf3 supplementation could serve as a therapeutic for this prevalent disorder. Furthermore, these findings suggest that factors that regulate synaptogenesis during development could prevent age-related synaptopathy in the brain, a process involved in several central nervous system degenerative disorders.


Asunto(s)
Células Ciliadas Auditivas Internas , Pérdida Auditiva , Animales , Cóclea/patología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Ratones , Ganglio Espiral de la Cóclea/patología , Sinapsis/patología
4.
Dev Neurobiol ; 81(5): 546-567, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33561889

RESUMEN

The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.


Asunto(s)
Vías Auditivas , Cóclea , Estimulación Acústica , Animales , Vías Auditivas/fisiología , Axones , Cóclea/fisiología , Humanos , Mamíferos , Neuroglía
5.
J Control Release ; 330: 575-586, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33378693

RESUMEN

Neurotrophin-3 growth factor can improve cochlear neuron survival, and localized delivery of this protein to the round window membrane in the middle ear may be able to reverse sensorineural hearing loss. Thus, the goal of this work was to develop an injectable hydrogel delivery system that can allow localized release of neurotrophin-3 in a controlled and sustained manner. We identified a PEG hydrogel formulation that uses thiol-vinyl sulfone Michael addition for crosslinking. This injectable formulation provides elastic hydrogels with higher mechanical rigidity, better bio-adhesion and longer residence time than Poloxamer hydrogels currently being investigated clinically for hearing loss. In vivo, PEG hydrogels induce local immune responses comparable to biocompatible Poloxamer hydrogels, yet they released payloads at a ~5-fold slower rate in the subcutaneous area. Based on this injectable hydrogel formulation, we designed an affinity-based protein release system by modifying PEG hydrogels with affinity peptides specific to neurotrophin-3 proteins. We verified the sustained release of neurotrophin-3 from peptide-conjugated PEG hydrogels resulting from the reversible interaction between peptides and proteins. The rate of affinity-controlled release depends on the polymer concentrations, the affinity of peptides and the peptide-to-protein ratios. Collectively, we developed an injectable hydrogel formulation for localized delivery of neurotrophin-3, which provides affinity-controlled release and longer delivery time compared to Poloxamer hydrogels.


Asunto(s)
Hidrogeles , Péptidos , Materiales Biocompatibles , Poloxámero , Polietilenglicoles , Proteínas
6.
Artículo en Inglés | MEDLINE | ID: mdl-30617057

RESUMEN

Hidden hearing loss (HHL), a recently described auditory disorder, has been proposed to affect auditory neural processing and hearing acuity in subjects with normal audiometric thresholds, particularly in noisy environments. In contrast to central auditory processing disorders, HHL is caused by defects in the cochlea, the peripheral auditory organ. Noise exposure, aging, ototoxic drugs, and peripheral neuropathies are some of the known risk factors for HHL. Our knowledge of the causes and mechanisms of HHL are based primarily on animal models. However, recent clinical studies have also shed light on the etiology and prevalence of this cochlear disorder and how it may affect auditory perception in humans. Here, we review the current knowledge regarding the causes and cellular mechanisms of HHL, summarize information on available noninvasive tests for differential diagnosis, and discuss potential therapeutic approaches for treatment of HHL.


Asunto(s)
Pérdida Auditiva/etiología , Pérdida Auditiva/fisiopatología , Pérdida Auditiva/terapia , Animales , Cóclea/fisiopatología , Nervio Coclear/fisiopatología , Diagnóstico Diferencial , Modelos Animales de Enfermedad , Células Ciliadas Auditivas Internas/patología , Células Ciliadas Auditivas Internas/fisiología , Humanos
7.
Biochim Biophys Acta Mol Basis Dis ; 1865(11): 165527, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31398465

RESUMEN

Increasing evidence shows that the olfactory bulb is involved in blood pressure regulation in health and disease. Enhanced noradrenergic transmission in the olfactory bulb was reported in hypertension. Given that endothelins modulate catecholamines and are involved in the pathogenesis of hypertension, in the present study we sought to establish the role of the endothelin receptor type A on tyrosine hydroxylase, the rate limiting enzyme in catecholamine biosynthesis, in the olfactory bulb of DOCA-salt hypertensive rats. Sprague-Dawley male rats, randomly divided into Control and DOCA-Salt hypertensive groups, were used to assess endothelin receptors by Western blot and confocal microscopy, and their co-localization with tyrosine hydroxylase in the olfactory bulb. Blood pressure and heart rate as well as tyrosine hydroxylase expression and activity were assessed following BQ610 (ETA antagonist) applied to the brain. DOCA-Salt hypertensive rats showed enhanced ETA and decreased ETB expression. ETA co-localized with tyrosine hydroxylase positive neurons. Acute ETA blockade reduced blood pressure and heart rate and decreased the expression of total tyrosine hydroxylase and its phosphorylated forms. Furthermore, it also diminished mRNA tyrosine hydroxylase expression and accelerated the enzyme degradation through the proteasome pathway as shown by pretreatment with MG132, (20s proteasome inhibitor) intracerebroventricularly applied. Present findings support that the brain endothelinergic system plays a major role through ETA activation in the increase of catecholaminergic activity in the olfactory bulb of DOCA-Salt hypertensive rats. They provide rationale evidence that this telencephalic structure contributes in a direct or indirect way to the hemodynamic regulation in salt dependent hypertension.


Asunto(s)
Catecolaminas/metabolismo , Hipertensión/fisiopatología , Bulbo Olfatorio/fisiopatología , Receptor de Endotelina A/metabolismo , Animales , Presión Sanguínea , Acetato de Desoxicorticosterona/efectos adversos , Hemodinámica , Hipertensión/etiología , Hipertensión/metabolismo , Masculino , Bulbo Olfatorio/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Endotelina A/análisis
8.
Int J Mol Sci ; 19(3)2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29495426

RESUMEN

Overactivity of the sympathetic nervous system and central endothelins (ETs) are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB) also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Following brain ET receptor type A (ETA) blockade by BQ610 (selective antagonist), transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH) were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ETA blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein) in the right OB of hypertensive animals. However, ETA blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ETA are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Catecolaminas/metabolismo , Antagonistas de los Receptores de la Endotelina A/farmacología , Hipertensión/etiología , Hipertensión/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Receptor de Endotelina A/metabolismo , Animales , Catecolaminas/farmacología , Acetato de Desoxicorticosterona/efectos adversos , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Expresión Génica , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/fisiopatología , Masculino , Fosforilación , Ratas , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...