Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 20(1): 443-453, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30525515

RESUMEN

Cellulose fibers can be freed from the cell-wall skeleton via high-shear homogenization, to produce cellulose nanofibers (CNF) that can be used, for example, as the reinforcing phase in composite materials. Nanofiber production from agro-industrial byproducts normally involves harsh chemical-pretreatments and high temperatures to remove noncellulosic polysaccharides (20-70% of dry weight). However, this is expensive for large-scale processing and environmentally damaging. An enzyme-only pretreatment to obtain CNF from agro-industrial byproducts (potato and sugar beet) was developed with targeted commercial enzyme mixtures. It is hypothesized that cellulose can be isolated from the biomass, using enzymes only, due to the low lignin content, facilitating greater liberation of CNF via high-shear homogenization. Comprehensive Microarray Polymer Profiling (CoMPP) measured remaining extractable polysaccharides, showing that the enzyme-pretreatment was more successful at removing noncellulosic polysaccharides than alkaline- or acid-hydrolysis alone. While effective alone, the effect of the enzyme-pretreatment was bolstered via combination with a mild high-pH pretreatment. Dynamic rheology was used to estimate the proportion of CNF in resultant suspensions. Enzyme-pretreated suspensions showed 4-fold and 10-fold increases in the storage modulus for potato and sugar beet, respectively, compared to untreated samples. A greener yet facile method for producing CNF from vegetable waste is presented here.


Asunto(s)
Biotecnología/métodos , Celulosa/análogos & derivados , Residuos Industriales , Nanofibras/química , Verduras/química , Beta vulgaris/química , Biocatálisis , Hidrólisis , Solanum tuberosum/química
2.
Appl Biochem Biotechnol ; 161(1-8): 255-63, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19763895

RESUMEN

Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching.


Asunto(s)
Carboxiliasas/metabolismo , Residuos Industriales , Oxidorreductasas/metabolismo , Aspergillus niger/enzimología , Inhibidores Enzimáticos/metabolismo , Proteínas Fúngicas/metabolismo , Hordeum/enzimología , Microbiología Industrial , Ácido Oxálico/metabolismo , Proteínas de Plantas/metabolismo
3.
J Biotechnol ; 109(1-2): 53-62, 2004 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-15063614

RESUMEN

Oxalate oxidase catalyses the degradation of oxalic acid to carbon dioxide and hydrogen peroxide and is of commercial importance for clinical analyses of oxalate in biological samples. Novel potential applications for oxalate oxidase include the prevention of the formation of calcium oxalate incrusts in pulp and paper manufacture and rapid determination of oxalic acid in process waters. The potential in using oxalate-degrading enzymes in industrial processes increases the interest in finding systems for heterologous expression. Oxalate oxidase from barley is a secreted multimeric glycosylated manganese-containing enzyme with several disulfide bridges, which have been found to be essential for the catalytic activity. Attempts to achieve expression of active heterologous oxalate oxidase in bacteria have up to now met little success. In this study, one oxalate-oxidase-encoding cDNA from barley and two from wheat were cloned and tested with regard to expression in Escherichia coli. The results suggest that the selection of a novel commercially available E. coli host strain, which has the ability to form disulfide bridges in heterologous proteins expressed in its cytoplasm, was important for successful expression. Although a considerable part of the heterologous protein was produced in an insoluble and inactive form, this strain, E. coli Origami B(DE3), in addition yielded soluble and active barley and wheat oxalate oxidase. One of the wheat cDNAs, Ta(M)OXO1, gave three-fold higher activity than the barley cDNA, Hv(H)OXO1, while the other wheat cDNA, Ta(M)OXO2, gave no detectable activity. This indicates that the choice of cDNA was also critical despite the high identity between the cDNAs and the encoded polypeptides (88-89% on the nucleotide level and 88-92% on the amino-acid level). Gel filtration of cell extracts containing heterologous barley and wheat oxalate oxidase resulted in an increase in the activity. This indicates that low molecular weight inhibitory compounds were present in the E. coli lysates but could be removed by the introduction of a purification step.


Asunto(s)
Escherichia coli/genética , Hordeum/enzimología , Oxidorreductasas/genética , Triticum/enzimología , Secuencia de Aminoácidos , Clonación Molecular , ADN Complementario/análisis , Escherichia coli/metabolismo , Vectores Genéticos/genética , Glutatión Reductasa/genética , Hordeum/genética , Datos de Secuencia Molecular , Mutación , Oxidorreductasas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA