Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(2): 113746, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38329873

RESUMEN

Lactic acid has emerged as an important modulator of immune cell function. It can be produced by both gut microbiota and the host metabolism at homeostasis and during disease states. The production of lactic acid in the gut microenvironment is vital for tissue homeostasis. In the present study, we examined how lactic acid integrates cellular metabolism to shape the epigenome of macrophages during pro-inflammatory response. We found that lactic acid serves as a primary fuel source to promote histone H3K27 acetylation, which allows the expression of immunosuppressive gene program including Nr4a1. Consequently, macrophage pro-inflammatory function was transcriptionally repressed. Furthermore, the histone acetylation induced by lactic acid promotes a form of long-term immunosuppression ("trained immunosuppression"). Pre-exposure to lactic acid induces lipopolysaccharide tolerance. These findings thus indicate that lactic acid sensing and its effect on chromatin remodeling in macrophages represent a key homeostatic mechanism that can provide a tolerogenic tissue microenvironment.


Asunto(s)
Histonas , Ácido Láctico , Acetilación , Expresión Génica , Macrófagos
2.
Neurogastroenterol Motil ; 32(12): e13989, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32986284

RESUMEN

BACKGROUND: The gut is the only organ system with intrinsic neural reflexes. Intrinsic primary afferent neurons (IPANs) of the enteric nervous system initiate intrinsic reflexes, form gut-brain connections, and undergo considerable neuroplasticity to cause digestive diseases. They remain inaccessible to study in mice in the absence of a selective marker. Advillin is used as a marker for primary afferent neurons in dorsal root ganglia. The aim of this study was to test the hypothesis that advillin is expressed in IPANs of the mouse jejunum. METHODS: Advillin expression was assessed with immunohistochemistry and using transgenic mice expressing an inducible Cre recombinase under the advillin promoter were used to drive tdTomato and the genetically encoded calcium indicator GCaMP5. These mice were used to characterize the morphology and physiology of advillin-expressing enteric neurons using confocal microscopy, calcium imaging, and whole-cell patch-clamp electrophysiology. KEY RESULTS: Advillin is expressed in about 25% of myenteric neurons of the mouse jejunum, and these neurons demonstrate the requisite properties of IPANs. Functionally, they demonstrate calcium responses following mechanical stimuli of the mucosa and during antidromic action potentials. They have Dogiel type II morphology with neural processes that mostly remain within the myenteric plexus, but also project to the mucosa and express NeuN and calcitonin gene-related peptide (CGRP), but not nNOS. CONCLUSIONS AND INFERENCES: Advillin marks jejunal IPANs providing accessibility to this important neuronal population to study and model digestive disease.


Asunto(s)
Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Yeyuno/citología , Yeyuno/metabolismo , Proteínas de Microfilamentos/biosíntesis , Neuronas Aferentes/metabolismo , Animales , Señalización del Calcio/fisiología , Sistema Nervioso Entérico/química , Yeyuno/química , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Neuronas Aferentes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA