Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Exp Bot ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377268

RESUMEN

The balance between cell growth, proliferation and differentiation emerges from gene regulatory networks coupled to various signal transduction pathways, including reactive oxygen species (ROS) and transcription factors (TFs), enabling developmental responses to environmental cues. The Arabidopsis thaliana's primary root has become a valuable system for unraveling such networks. Recently, the role of TFs that mediate the ROS's inhibition of primary root growth has begun to be characterized. This study demonstrates that the MADS-box transcription factor XAANTAL1 (XAL1) is an essential regulator of hydrogen peroxide (H2O2) in primary root growth and root stem cell niche identity. Interestingly, our findings suggest that XAL1 acts as a positive regulator of H2O2 concentration in the root meristem by directly regulating genes involved in oxidative stress response, such as PEROXIDASE 28 (PER28). Moreover, we found that XAL1 is necessary for the H2O2-induced inhibition of primary root growth through the negative regulation of peroxidase and catalase activities. Furthermore, XAL1, in conjunction with RETINOBLASTOMA-RELATED (RBR), is essential for positively regulating the differentiation of columella stem cells and for participating in primary root growth inhibition in response to oxidative stress induced by H2O2 treatment.

2.
Front Plant Sci ; 15: 1331269, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576790

RESUMEN

MADS-domain transcription factors play pivotal roles in numerous developmental processes in Arabidopsis thaliana. While their involvement in flowering transition and floral development has been extensively examined, their functions in root development remain relatively unexplored. Here, we explored the function and genetic interaction of three MADS-box genes (XAL2, SOC1 and AGL24) in primary root development. By analyzing loss-of-function and overexpression lines, we found that SOC1 and AGL24, both critical components in flowering transition, redundantly act as repressors of primary root growth as the loss of function of either SOC1 or AGL24 partially recovers the primary root growth, meristem cell number, cell production rate, and the length of fully elongated cells of the short-root mutant xal2-2. Furthermore, we observed that the simultaneous overexpression of AGL24 and SOC1 leads to short-root phenotypes, affecting meristem cell number and fully elongated cell size, whereas SOC1 overexpression is sufficient to affect columella stem cell differentiation. Additionally, qPCR analyses revealed that these genes exhibit distinct modes of transcriptional regulation in roots compared to what has been previously reported for aerial tissues. We identified 100 differentially expressed genes in xal2-2 roots by RNA-seq. Moreover, our findings revealed that the expression of certain genes involved in cell differentiation, as well as stress responses, which are either upregulated or downregulated in the xal2-2 mutant, reverted to WT levels in the absence of SOC1 or AGL24.

3.
J Food Biochem ; 46(5): e14094, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35322442

RESUMEN

Barley malting depends on hydrolytic enzymes that degrade storage macromolecules. Identifying barley cultivars with proteolytic activity that guarantees appropriate foaming, flavor, and aroma in the beer is of great importance. In this work, the proteolytic activity and profiles of brewing malt from Mexican barley cultivars were analyzed. Data showed that Cys- (at 50°C) and Ser-proteases (at 70°C) are the major contributors to proteolytic activity during mashing. Essential amino acids, necessary for fermentation and production of good flavor and aroma in beer, were detected at the end of mashing. According to our results, Mexican cultivar HV2005-19 exhibits similar proteolytic activities as those from cultivar Metcalfe, which is one of the most utilized for the brewing industry. Moreover, we propose Cys- and Ser-proteases as biochemical markers during mashing at 50 and 70°C, respectively, to select barley cultivars for beer production. PRACTICAL APPLICATIONS: Proteolytic activity, which depends on activation and de novo synthesis of proteases in the aleurone layer of barley seeds, is crucial in beer production. Identifying new barley varieties that have optimal proteolytic activities is of great interest for genetic improvement programs. In this study, we propose the variety HV2005-19 as a genotype with Cys- and Ser-proteases activity similar to that from Metcalfe, which is a top variety in the brewing industry.


Asunto(s)
Hordeum , Cerveza/análisis , Fermentación , Hordeum/química , Hordeum/genética , Péptido Hidrolasas/genética , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA