Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611351

RESUMEN

The increasing population, food demand, waste management concerns, and the search for sustainable alternatives to plastic polymers have led researchers to explore the potential of waste materials. This study focused on a waste of pine nut processing referred to in this paper as pine nut skin. For the first time, its nutritional profile, potential bioactive peptide, contaminants, and morphological structure were assessed. Pine nut skin was composed mainly of carbohydrates (56.2%) and fiber (27.5%). The fat (9.8%) was about 45%, 35%, and 20% saturated, monounsaturated, and polyunsaturated fatty acid, respectively, and Omega-9,-6, and -3 were detected. Notably, oleic acid, known for its health benefits, was found in significant quantities, resembling its presence in pine nut oil. The presence of bioactive compounds such as eicosapentaenoic acid (EPA) and phytosterols further adds to its nutritional value. Some essential elements were reported, whereas most of the contaminants such as heavy metals, polycyclic aromatic hydrocarbons, rare earth elements, and pesticides were below the limit of quantification. Furthermore, the in silico analysis showed the occurrence of potential precursor peptides of bioactive compounds, indicating health-promoting attributes. Lastly, the morphological structural characterization of the pine nut skin was followed by Fourier Transform Infrared and solid-state NMR spectroscopy to identify the major components, such as lignin, cellulose, and hemicellulose. The thermostability of the pine nut skin was monitored via thermogravimetric analysis, and the surface of the integument was analyzed via scanning electron microscopy and volumetric nitrogen adsorption. This information provides a more comprehensive view of the potential uses of pine nut skin as a filler material for biocomposite materials. A full characterization of the by-products of the food chain is essential for their more appropriate reuse.

2.
Foods ; 12(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37685154

RESUMEN

This work proposes a biorefinery approach for utilizing tomato pomace (TP) through a top-down deconstructing strategy, combining mild chemical hydrolysis with high-pressure homogenization (HPH). The objective of the study is to isolate cellulose pulp using different combinations of chemical and physical processes: (i) direct HPH treatment of the raw material, (ii) HPH treatment following acid hydrolysis, and (iii) HPH treatment following alkaline hydrolysis. The results demonstrate that these isolation routes enable the production of cellulose with tailored morphological properties from TP with higher yields (up to +21% when HPH was applied before hydrolysis and approximately +6% when applied after acid or after alkaline hydrolysis). Additionally, the side streams generated by this cascade process show a four-fold increase in phenolic compounds when HPH is integrated after acid hydrolysis compared to untreated sample, and they also contain nanoparticles composed of hemicellulose and lignin, as shown by FT-IR and SEM. Notably, the further application of HPH treatment enables the production of nanostructured cellulose from cellulose pulp derived from TP, offering tunable properties. This approach presents a sustainable pathway for the extraction of cellulose and nanocellulose, as well as the valorization of value-added compounds found in residual biomass in the form of side streams.

3.
J Colloid Interface Sci ; 652(Pt B): 1308-1324, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659303

RESUMEN

HYPOTHESIS: Implementation of tissue adhesives from natural sources endowed with good mechanical properties and underwater resistance still represents a challenging research goal. Inspired by the extraordinary wet adhesion properties of mussel byssus proteins resulting from interaction of catechol and amino residues, hydrogels from soy protein isolate (SPI) and selected polyphenols i.e. caffeic acid (CA), chlorogenic acid (CGA) and gallic acid (GA) under mild aerial oxidative conditions were prepared. EXPERIMENTS: The hydrogels were subjected to chemical assays, ATR FT-IR and EPR spectroscopy, rheological and morphological SEM analysis. Mechanical tests were carried out on hydrogels prepared by inclusion of agarose. Biological tests included evaluation of the antibacterial and wound healing activity, and hemocompatibility. FINDINGS: The decrease of free NH2 and SH groups of SPI, the EPR features, the good cohesive strength and excellent underwater resistance (15 days for SPI/GA) under conditions relevant to their use as surgical glues indicated an efficient interaction of the polyphenols with the protein in the hydrogels. The polyphenols greatly also improved the mechanical properties of the SPI/ agarose/polyphenols hydrogels. These latter proved biocompatible, hemocompatible, not harmful to skin, displayed durable adhesiveness and good water-vapour permeability. Excellent antibacterial properties and in some cases (SPI/CGA) a favourable wound healing activity on dermal fibroblasts was obtained.

4.
ACS Appl Polym Mater ; 5(8): 5917-5925, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37588083

RESUMEN

Smart polymer coatings embedding stimuli-responsive corrosion inhibitor nanocarriers are commonly exploited, in the literature, for the development of high-performance active coatings. In this work, high-surface-area amino-functionalized mesoporous silica nanoparticles (MSN-NH2) were developed with a one-step synthesis process and then functionalized with benzoyl chloride (MSN-BC) through a reaction with amino groups. MSN-BC are able to release benzoic acid (BA) in acid and alkaline conditions as a result of the hydrolysis of the pH-sensitive amide bond. MSN-BC were embedded in polymer coatings to exploit the pH-dependent release of corrosion-inhibiting BA. After an in-depth characterization of the developed functional nanoparticles and of their pH-dependent release kinetics of BA, MSN-BC were embedded in an acrylic matrix, realizing coatings for the corrosion protection of aluminum AA2024 alloys. Results demonstrate the effectiveness of the nanoparticles' porous structure for a high loading of the anticorrosive active agent BA and the long-lasting efficiency of the coating for the corrosion protection of aluminum alloys, as validated by morphological and electrochemical impedance spectroscopy (EIS) measurements. EIS experiments were carried out with up to 21 days of exposure to a corrosive environment, revealing the potentialities of the acrylic coatings embedding MSN-BC for the protection of aluminum alloys.

5.
ACS Appl Mater Interfaces ; 15(30): 36811-36821, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37467121

RESUMEN

New sustainable materials produced by green processing routes are required in order to meet the concepts of circular economy. The replacement of insulating materials comprising flammable synthetic polymers by bio-based materials represents a potential opportunity to achieve this task. In this paper, low-density and flame-retardant (FR) porous fiber networks are prepared by assembling Layer-by-Layer (LbL)-functionalized cellulose fibers by means of freeze-drying. The LbL coating, encompassing chitosan and sodium hexametaphosphate, enables the formation of a self-sustained porous structure by enhancing fiber-fiber interactions during the freeze-drying process. Fiber networks prepared from 3 Bi-Layer (BL)-coated fibers contain 80% wt of cellulose and can easily self-extinguish the flame during flammability tests in vertical configuration while displaying extremely low combustion rates in forced combustion tests. Smoke release is 1 order of magnitude lower than that of commercially available polyurethane foams. Such high FR efficiency is ascribed to the homogeneity of the deposited assembly, which produces a protective exoskeleton at the air/cellulose interface. The results reported in this paper represent an excellent opportunity for the development of fire-safe materials, encompassing natural components where sustainability and performance are maximized.

6.
Nanomaterials (Basel) ; 13(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37049377

RESUMEN

Plasticized nanocomposites based on poly(lactic acid) have been prepared by melt mixing following a two-step approach, adding two different oligomeric esters of lactic acid (OLAs) as plasticizers and fumed silica nanoparticles. The nanocomposites maintained a remarkable elongation at break in the presence of the nanoparticles, with no strong effects on modulus and strength. Measuring thermo-mechanical properties as a function of aging time revealed a progressive deterioration of properties, with the buildup of phase separation, related to the nature of the plasticizer. Materials containing hydroxyl-terminated OLA showed a higher stability of properties upon aging. On the contrary, a synergistic effect of the acid-terminated plasticizer and silica nanoparticles was pointed out, inducing an accelerated hydrolytic degradation of PLA: materials at high silica content exhibited a marked brittleness and a dramatic decrease of molecular weight after 16 weeks of aging.

7.
Materials (Basel) ; 16(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36902993

RESUMEN

A hybrid montmorillonite (MMT)/reduced graphene oxide (rGO) film was realised and used as a non-invasive sensor for the monitoring of water absorption and desorption in pristine and consolidated tuff stones. This film was obtained by casting from a water dispersion containing graphene oxide (GO), montmorillonite and ascorbic acid; then the GO component was thermo-chemically reduced and the ascorbic acid phase was removed by washing. The hybrid film showed electrical surface conductivity that varied linearly with the relative humidity, ranging from 2.3 × 10-3 S in dry conditions to 5.0 × 10-3 S at 100% RH. The sensor was applied onto tuff stone samples through the use of a high amorphous polyvinyl alcohol layer (HAVOH) adhesive, which guaranteed good water diffusion from the stone to the film and was tested during water capillary absorption and drying tests. Results show that the sensor is able to monitor water content changes in the stone, being potentially useful to evaluate the water absorption and desorption behaviour of porous samples both in laboratory environments and in situ.

8.
Polymers (Basel) ; 15(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36904355

RESUMEN

Nanostructured cellulose (NC) represents an emerging sustainable biomaterial for diverse biotechnological applications; however, its production requires hazardous chemicals that render the process ecologically unfriendly. Using commercial plant-derived cellulose, an innovative strategy for NC production based on the combination of mechanical and enzymatic approaches was proposed as a sustainable alternative to conventional chemical procedures. After ball milling, the average length of the fibers was reduced by one order of magnitude (down to 10-20 µm) and the crystallinity index decreased from 0.54 to 0.07-0.18. Moreover, a 60 min ball milling pre-treatment followed by 3 h Cellic Ctec2 enzymatic hydrolysis led to NC production (15% yield). Analysis of the structural features of NC obtained by the mechano-enzymatic process revealed that the diameters of the obtained cellulose fibrils and particles were in the range of 200-500 nm and approximately 50 nm, respectively. Interestingly, the film-forming property on polyethylene (coating ≅ 2 µm thickness) was successfully demonstrated and a significant reduction (18%) of the oxygen transmission rate was obtained. Altogether, these findings demonstrated that nanostructured cellulose could be successfully produced using a novel, cheap, and rapid 2-step physico-enzymatic process that provides a potential green and sustainable route that could be exploitable in future biorefineries.

9.
BMC Musculoskelet Disord ; 23(1): 1140, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36581922

RESUMEN

BACKGROUND: Autologous hamstrings and patellar tendon have historically been considered the gold standard grafts for anterior cruciate ligament reconstruction (ACLR). In the last decades, the utilization of synthetic grafts has re-emerged due to advantageous lack of donor site morbidity and more rapid return to sport. The Ligament Augmentation and Reconstruction System (LARS) has demonstrated to be a valid and safe option for ACLR in the short term. However, recent studies have pointed out the notable frequency of associated complications, including synovitis, mechanical failure, and even chondrolysis requiring joint replacement. CASE PRESENTATION: We report the case of a 23-year-old male who developed a serious foreign body reaction with wide osteolysis of both femoral and tibial tunnels following ACLR with LARS. During first-stage arthroscopy, we performed a debridement of the pseudocystic mass incorporating the anterior cruciate ligament (ACL) and extending towards the tunnels, which were filled with autologous anterior iliac crest bone graft chips. Histological analysis revealed the presence of chronic inflammation, fibrosis, and foreign body giant cells with synthetic fiber inclusions. Furthermore, physicochemical analysis showed signs of fiber depolymerization, increased crystallinity and formation of lipid peroxidation-derived aldehydes, which indicate mechanical aging and instability of the graft. After 8 months, revision surgery was performed and ACL revision surgery with autologous hamstrings was successfully carried out. CONCLUSIONS: The use of the LARS grafts for ACLR should be cautiously contemplated considering the high risk of complications and early failure.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Osteólisis , Masculino , Humanos , Adulto Joven , Adulto , Lesiones del Ligamento Cruzado Anterior/cirugía , Osteólisis/diagnóstico por imagen , Osteólisis/etiología , Osteólisis/cirugía , Reconstrucción del Ligamento Cruzado Anterior/efectos adversos , Ligamento Cruzado Anterior/cirugía , Reacción a Cuerpo Extraño/diagnóstico por imagen , Reacción a Cuerpo Extraño/etiología , Reacción a Cuerpo Extraño/cirugía
10.
Sci Rep ; 12(1): 21827, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528736

RESUMEN

Microplastics of fibrous shape are esteemed to be the most abundant micro-debris form present in the environment. Despite the occurrence of microfibers in fish may pose a risk to human health, the literature is scarce regarding studies on the contamination in commercial marine fish mostly due to methodological issues. In this study, a versatile approach, able to discriminate among natural and synthetic microfibers according to the evaluation of specific morphological features, is proposed in farmed mussels (Mytilus galloprovincialis). The approach was useful to determine that microfibers were present in 74% of mussel samples, with a mean number of 14.57 microfibers/individual, corresponding to 3.13 microfibers/g w.w. A negative correlation between the size of analysed mussels and the amount of microfibers/g w.w. was detected, showing that smaller specimens contained more microfibers than the larger ones. This work paves the way to further studies aimed to adequately assess the risk that microfibers may pose to marine biota, also considering the commercial value as seafood items of many species of the Mytilus genus and the potential implication for human exposure.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Humanos , Plásticos/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Alimentos Marinos/análisis
11.
RSC Adv ; 12(48): 31215-31224, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36349050

RESUMEN

The water-oil interface is an environment that is often found in many contexts of the natural sciences and technological arenas. This interface has always been considered a special environment as it is rich in different phenomena, thus stimulating numerous studies aimed at understanding the abundance of physico-chemical problems that occur there. The intense research activity and the intriguing results that emerged from these investigations have inspired scientists to consider the water-oil interface even as a suitable setting for bottom-up nanofabrication processes, such as molecular self-assembly, or fabrication of nanofilms or nano-devices. On the other hand, biphasic liquid separation is a key enabling technology in many applications, including water treatment for environmental problems. Here we show for the first time an instant nanofabrication strategy of a thin film of biopolymer at the water-oil interface. The polymer film is fabricated in situ, simply by injecting a drop of polymer solution at the interface. Furthermore, we demonstrate that with an appropriate multiple drop delivery it is also possible to quickly produce a large area film (up to 150 cm2). The film inherently separates the two liquids, thus forming a separation layer between them and remains stable at the interface for a long time. Furthermore, we demonstrate the fabrication with different oils, thus suggesting potential exploitation in different fields (e.g. food, pollution, biotechnology). We believe that the new strategy fabrication could inspire different uses and promote applications among the many scenarios already explored or to be studied in the future at this special interface environment.

12.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35893513

RESUMEN

Plasmonic nanostructures, featuring near infrared (NIR)-absorption, are rising as efficient nanosystems for in vitro photothermal (PT) studies and in vivo PT treatment of cancer diseases. Among the different materials, new plasmonic nanostructures based on Cu2-xS nanocrystals (NCs) are emerging as valuable alternatives to Au nanorods, nanostars and nanoshells, largely exploited as NIR absorbing nanoheaters. Even though Cu2-xS plasmonic properties are not linked to geometry, the role played by their size, shape and surface chemistry is expected to be fundamental for an efficient PT process. Here, Cu2-xS NCs coated with a hydrophilic mesoporous silica shell (MSS) are synthesized by solution-phase strategies, tuning the core geometry, MSS thickness and texture. Besides their loading capability, the silica shell has been widely reported to provide a more robust plasmonic core protection than organic molecular/polymeric coatings, and improved heat flow from the NC to the environment due to a reduced interfacial thermal resistance and direct electron-phonon coupling through the interface. Systematic structural and morphological analysis of the core-shell nanoparticles and an in-depth thermoplasmonic characterization by using a pump beam 808 nm laser, are carried out. The results suggest that large triangular nanoplates (NPLs) coated by a few tens of nanometers thick MSS, show good photostability under laser light irradiation and provide a temperature increase above 38 °C and a 20% PT efficiency upon short irradiation time (60 s) at 6 W/cm2 power density.

13.
J Colloid Interface Sci ; 624: 400-410, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35671617

RESUMEN

HYPOTHESIS: The possibility to use hexamethylenediamine (HMDA) to impart film forming ability to natural polymers including eumelanins and plant polyphenols endowed with biological activity and functional properties has been recently explored with the aim to broaden the potential of polydopamine (PDA)-based films overcoming their inherent limitations. 5,6-dihydroxyindole-2-carboxylic acid, its methyl ester (MeDHICA) and eumelanins thereof were shown to exhibit potent reducing activity. EXPERIMENTS: MeDHICA and HMDA were reacted in aqueous buffer, pH 9.0 in the presence of different substrates to assess the film forming ability. The effect of different reaction parameters (pH, diamine chain length) on film formation was investigated. Voltammetric and AFM /SEM methods were applied for analysis of the film redox activity and morphology. HPLC, MALDI-MS and 1HNMR were used for chemical characterization. The film reducing activity was evaluated in comparison with PDA by chemical assays and using UV stressed human immortalized keratinocytes (HaCat) cells model. FINDINGS: Regular and homogeneous yellowish films were obtained with moderately hydrophobic properties. Film deposition was optimal at pH 9, and specifically induced by HMDA. The film consisted of HMDA and monomeric MeDHICA accompanied by dimers/small oligomers, but no detectable MeDHICA/HMDA covalent conjugation products. Spontaneous assembly of self-organized networks held together mainly by electrostatic interactions of MeDHICA in the anion form and HMDA as the dication is proposed as film deposition mechanism. The film displayed potent reducing properties and exerted significant protective effects from oxidative stress on HaCaT.


Asunto(s)
Indoles , Polímeros , Humanos , Indoles/química , Indoles/farmacología , Oxidación-Reducción , Polímeros/química , Polímeros/farmacología , Tecnología
14.
Polymers (Basel) ; 14(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215721

RESUMEN

The sustainable management of multilayer paper/plastic waste is a technological challenge due to its composite nature. In this paper, a mechanical recycling approach for multilayer cartons (MC) is reported, illustrating the realization of thermoplastic composites based on recycled polyethylene and an amount of milled MC ranging from 20 to 90 wt%. The effect of composition of the composites on the morphology and on thermal, mechanical, and water absorption behavior was investigated and rationalized, demonstrating that above 80 wt% of MC, the fibrous nature of the filler dominates the overall properties of the materials. A maleated polyethylene was also used as a coupling agent and its effectiveness in improving mechanical parameters of composites up to 60 wt% of MC was highlighted.

15.
Sci Rep ; 11(1): 19479, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593897

RESUMEN

Microplastics released from textiles during the washing process represent the most prevalent type of microparticles found in different environmental compartments and ecosystems around the world. Release of microfibres during the washing process of synthetic textiles is due to the mechanical and chemical stresses that clothes undergo in washing machines. Several washing process parameters, conditions, formulations of laundering additives have been correlated to microfibre release and some of them have been identified to affect microfibre release during washing process, while no correlation has been evaluated between microfibre release and washing load. In the present study, microfibre release was evaluated as function of the washing load in a real washing process, indicating a progressive decrease of microfibre release with increasing washing load. The quantity of released microfibres increased by around 5 times by decreasing the washing load due to a synergistic effect between water-volume to fabric ratio and mechanical stress during washing. Moreover, the higher mechanical stress to which the fabric is subjected in the case of a low washing load, hinders the discrimination of the effect on the release of other washing parameters like the type of detergent and laundry additives used.

16.
ACS Appl Mater Interfaces ; 13(40): 48141-48152, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34607424

RESUMEN

In this work, engineered stimuli-responsive mesoporous silica nanoparticles (MSNs) were developed and exploited in polymer coatings as multifunctional carriers of a typical corrosion inhibitor, benzotriazole (BTA). In detail, a new capping system based on a BTA-silver coordination complex, able to dissolve in acid and alkaline conditions and to simultaneously tailor the BTA release and the capture of chloride ions, was properly designed and realized. Acrylic coatings embedding the engineered MSNs were deposited onto iron rebar samples and tested for their protective capability in acid and alkaline environments. Results highlighted the high potential of the proposed system for the protection of metals, due to the synergistic effect of the mesoporous structure and the capping system, which guaranteed both the sequestration of chloride ions and the on-demand release of the effective amount of anticorrosive agents able to ensure the enhanced protection of the substrate.

17.
Polymers (Basel) ; 13(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34451321

RESUMEN

In this paper, a sustainable strategy to valorize and recycle heterogeneous polymer-based post-consumer waste is proposed. This strategy is based on a high-energy mechano-chemical treatment and has been applied to a polyolefin-rich fraction, coded as FIL/S, deriving from household plastic waste collection. This processing, performed in a planetary ball mill, allowed us to obtain fine grinding and, consequently, to induce an intimate mixing of the different polymer fractions and contaminants composing the FIL/S, as demonstrated by SEM analysis. As a result, an improvement in the deformability of the treated material was obtained, recording values for elongation at the break which were two and half times higher than the neat FIL/S. Finally, the addition of small amounts of organic peroxide during mechano-chemical treatment was tested, determining a more homogeneous morphology and a further improvement in mechanical parameters.

18.
Nano Lett ; 21(14): 5958-5966, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34232045

RESUMEN

Interaction of nanoparticles (NPs) with cells is of fundamental importance in biology and biomedical sciences. NPs can be taken up by cells, thus interacting with their intracellular elements, modifying the life cycle pathways, and possibly inducing death. Therefore, there is a great interest in understanding and visualizing the process of cellular uptake itself or even secondary effects, for example, toxicity. Nowadays, no method is reported yet in which 3D imaging of NPs distribution can be achieved for suspended cells in flow-cytometry. Here we show that, by means of label-free tomographic flow-cytometry, it is possible to obtain full 3D quantitative spatial distribution of nanographene oxide (nGO) inside each single flowing cell. This can allow the setting of a class of biomarkers that characterize the 3D spatial intracellular deployment of nGO or other NPs clusters, thus opening the route for quantitative descriptions to discover new insights in the realm of NP-cell interactions.


Asunto(s)
Grafito , Nanopartículas , Citometría de Flujo , Óxidos
19.
Molecules ; 26(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34299522

RESUMEN

Mesoporous silica nanostructures (MSNs) attract high interest due to their unique and tunable physical chemical features, including high specific surface area and large pore volume, that hold a great potential in a variety of fields, i.e., adsorption, catalysis, and biomedicine. An essential feature for biomedical application of MSNs is limiting MSN size in the sub-micrometer regime to control uptake and cell viability. However, careful size tuning in such a regime remains still challenging. We aim to tackling this issue by developing two synthetic procedures for MSN size modulation, performed in homogenous aqueous/ethanol solution or two-phase aqueous/ethyl acetate system. Both approaches make use of tetraethyl orthosilicate as precursor, in the presence of cetyltrimethylammonium bromide, as structure-directing agent, and NaOH, as base-catalyst. NaOH catalyzed syntheses usually require high temperature (>80 °C) and large reaction medium volume to trigger MSN formation and limit aggregation. Here, a successful modulation of MSNs size from 40 up to 150 nm is demonstrated to be achieved by purposely balancing synthesis conditions, being able, in addition, to keep reaction temperature not higher than 50 °C (30 °C and 50 °C, respectively) and reaction mixture volume low. Through a comprehensive and in-depth systematic morphological and structural investigation, the mechanism and kinetics that sustain the control of MSNs size in such low dimensional regime are defined, highlighting that modulation of size and pores of the structures are mainly mediated by base concentration, reaction time and temperature and ageing, for the homogenous phase approach, and by temperature for the two-phase synthesis. Finally, an in vitro study is performed on bEnd.3 cells to investigate on the cytotoxicity of the MNSs.

20.
Nanoscale ; 13(20): 9091-9111, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33982729

RESUMEN

Mesoporous silica nanoparticles (MSN) have attracted increasing interest for their applicability as smart nanocarriers of corrosion inhibitors, due to their porous structure, resistance to main corrosive environments and good compatibility with polymer coatings. In this review, the main synthetic routes to obtain MSN with tailored textural properties, the design of different loading and stimuli-induced release strategies, the development of advanced organic nanocomposite coatings with MSN and the validation of their anticorrosive performances are reviewed and compared. Through a critical analysis of the literature, the most promising research trends and perspectives to exploit the highly interesting properties of MSN in advanced organic coatings are proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...