Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(10)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37893236

RESUMEN

Lewy body dementia (LBD) is an often misdiagnosed and mistreated neurodegenerative disorder clinically characterized by the emergence of neuropsychiatric symptoms followed by motor impairment. LBD falls within an undefined range between Alzheimer's disease (AD) and Parkinson's disease (PD) due to the potential pathogenic synergistic effects of tau, beta-amyloid (Aß), and alpha-synuclein (αsyn). A lack of reliable and relevant animal models hinders the elucidation of the molecular characteristics and phenotypic consequences of these interactions. Here, the goal was to evaluate whether the viral-mediated overexpression of αsyn in adult hTau and APP/PS1 mice or the overexpression of tau in Line 61 hThy1-αsyn mice resulted in pathology and behavior resembling LBD. The transgenes were injected intravenously via the tail vein using AAV-PHP.eB in 3-month-old hThy1-αsyn, hTau, or APP/PS1 mice that were then aged to 6-, 9-, and 12-months-old for subsequent phenotypic and histological characterization. Although we achieved the widespread expression of αsyn in hTau and tau in hThy1-αsyn mice, no αsyn pathology in hTau mice and only mild tau pathology in hThy1-αsyn mice was observed. Additionally, cognitive, motor, and limbic behavior phenotypes were not affected by overexpression of the transgenes. Furthermore, our APP/PS1 mice experienced premature deaths starting at 3 months post-injection (MPI), therefore precluding further analyses at later time points. An evaluation of the remaining 3-MPI indicated no αsyn pathology or cognitive and motor behavioral changes. Taken together, we conclude that the overexpression of αsyn in hTau and APP/PS1 mice and tau in hThy1-αsyn mice does not recapitulate the behavioral and neuropathological phenotypes observed in LBD.

2.
Cell Rep ; 42(8): 112822, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37471224

RESUMEN

C9orf72 repeat expansions are the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly(GR) proteins are toxic to neurons by forming cytoplasmic inclusions that sequester RNA-binding proteins including stress granule (SG) proteins. However, little is known of the factors governing poly(GR) inclusion formation. Here, we show that poly(GR) infiltrates a finely tuned network of protein-RNA interactions underpinning SG formation. It interacts with G3BP1, the key driver of SG assembly and a protein we found is critical for poly(GR) inclusion formation. Moreover, we discovered that N6-methyladenosine (m6A)-modified mRNAs and m6A-binding YTHDF proteins not only co-localize with poly(GR) inclusions in brains of c9FTD/ALS mouse models and patients with c9FTD, they promote poly(GR) inclusion formation via the incorporation of RNA into the inclusions. Our findings thus suggest that interrupting interactions between poly(GR) and G3BP1 or YTHDF1 proteins or decreasing poly(GR) altogether represent promising therapeutic strategies to combat c9FTD/ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Animales , Ratones , Humanos , Esclerosis Amiotrófica Lateral/patología , ADN Helicasas/metabolismo , Gránulos de Estrés , Expansión de las Repeticiones de ADN , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Demencia Frontotemporal/metabolismo , Cuerpos de Inclusión/metabolismo , Proteínas de Choque Térmico/metabolismo , ARN/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo
4.
Acta Neuropathol Commun ; 11(1): 109, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415197

RESUMEN

Frontotemporal lobar degeneration (FTLD) is a group of disorders characterized by degeneration of the frontal and temporal lobes, leading to progressive decline in language, behavior, and motor function. FTLD can be further subdivided into three main subtypes, FTLD-tau, FTLD-TDP and FTLD-FUS based which of the three major proteins - tau, TDP-43 or FUS - forms pathological inclusions in neurons and glia. In this report, we describe an 87-year-old woman with a 7-year history of cognitive decline, hand tremor and gait problems, who was thought to have Alzheimer's disease. At autopsy, histopathological analysis revealed severe neuronal loss, gliosis and spongiosis in the medial temporal lobe, orbitofrontal cortex, cingulate gyrus, amygdala, basal forebrain, nucleus accumbens, caudate nucleus and anteromedial thalamus. Tau immunohistochemistry showed numerous argyrophilic grains, pretangles, thorn-shaped astrocytes, and ballooned neurons in the amygdala, hippocampus, parahippocampal gyrus, anteromedial thalamus, insular cortex, superior temporal gyrus and cingulate gyrus, consistent with diffuse argyrophilic grain disease (AGD). TDP-43 pathology in the form of small, dense, rounded neuronal cytoplasmic inclusion with few short dystrophic neurites was observed in the limbic regions, superior temporal gyrus, striatum and midbrain. No neuronal intranuclear inclusion was observed. Additionally, FUS-positive inclusions were observed in the dentate gyrus. Compact, eosinophilic intranuclear inclusions, so-called "cherry spots," that were visible on histologic stains were immunopositive for α-internexin. Taken together, the patient had a mixed neurodegenerative disease with features of diffuse AGD, TDP-43 proteinopathy and neuronal intermediate filament inclusion disease. She met criteria for three subtypes of FTLD: FTLD-tau, FTLD-TDP and FTLD-FUS. Her amnestic symptoms that were suggestive of Alzheimer's type dementia are best explained by diffuse AGD and medial temporal TDP-43 proteinopathy, and her motor symptoms were likely explained by neuronal loss and gliosis due to tau pathology in the substantia nigra. This case underscores the importance of considering multiple proteinopathies in the diagnosis of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedades Neurodegenerativas , Proteinopatías TDP-43 , Humanos , Femenino , Anciano de 80 o más Años , Filamentos Intermedios/metabolismo , Filamentos Intermedios/patología , Gliosis , Degeneración Lobar Frontotemporal/patología , Proteínas tau/metabolismo , Cuerpos de Inclusión Intranucleares/patología , Proteínas de Unión al ADN/metabolismo , Proteína FUS de Unión a ARN
5.
Lab Invest ; 103(6): 100127, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36889541

RESUMEN

Neuropathologic assessment during autopsy is the gold standard for diagnosing neurodegenerative disorders. Neurodegenerative conditions, such as Alzheimer disease (AD) neuropathological change, are a continuous process from normal aging rather than categorical; therefore, diagnosing neurodegenerative disorders is a complicated task. We aimed to develop a pipeline for diagnosing AD and other tauopathies, including corticobasal degeneration (CBD), globular glial tauopathy, Pick disease, and progressive supranuclear palsy. We used a weakly supervised deep learning-based approach called clustering-constrained-attention multiple-instance learning (CLAM) on the whole-slide images (WSIs) of patients with AD (n = 30), CBD (n = 20), globular glial tauopathy (n = 10), Pick disease (n = 20), and progressive supranuclear palsy (n = 20), as well as nontauopathy controls (n = 21). Three sections (A: motor cortex; B: cingulate gyrus and superior frontal gyrus; and C: corpus striatum) that had been immunostained for phosphorylated tau were scanned and converted to WSIs. We evaluated 3 models (classic multiple-instance learning, single-attention-branch CLAM, and multiattention-branch CLAM) using 5-fold cross-validation. Attention-based interpretation analysis was performed to identify the morphologic features contributing to the classification. Within highly attended regions, we also augmented gradient-weighted class activation mapping to the model to visualize cellular-level evidence of the model's decisions. The multiattention-branch CLAM model using section B achieved the highest area under the curve (0.970 ± 0.037) and diagnostic accuracy (0.873 ± 0.087). A heatmap showed the highest attention in the gray matter of the superior frontal gyrus in patients with AD and the white matter of the cingulate gyrus in patients with CBD. Gradient-weighted class activation mapping showed the highest attention in characteristic tau lesions for each disease (eg, numerous tau-positive threads in the white matter inclusions for CBD). Our findings support the feasibility of deep learning-based approaches for the classification of neurodegenerative disorders on WSIs. Further investigation of this method, focusing on clinicopathologic correlations, is warranted.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Enfermedades Neurodegenerativas , Enfermedad de Pick , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Enfermedad de Pick/patología , Proteínas tau , Tauopatías/diagnóstico por imagen , Tauopatías/patología
6.
Science ; 378(6615): 94-99, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36201573

RESUMEN

Frontotemporal dementia and amyotrophic lateral sclerosis (FTD-ALS) are associated with both a repeat expansion in the C9orf72 gene and mutations in the TANK-binding kinase 1 (TBK1) gene. We found that TBK1 is phosphorylated in response to C9orf72 poly(Gly-Ala) [poly(GA)] aggregation and sequestered into inclusions, which leads to a loss of TBK1 activity and contributes to neurodegeneration. When we reduced TBK1 activity using a TBK1-R228H (Arg228→His) mutation in mice, poly(GA)-induced phenotypes were exacerbated. These phenotypes included an increase in TAR DNA binding protein 43 (TDP-43) pathology and the accumulation of defective endosomes in poly(GA)-positive neurons. Inhibiting the endosomal pathway induced TDP-43 aggregation, which highlights the importance of this pathway and TBK1 activity in pathogenesis. This interplay between C9orf72, TBK1, and TDP-43 connects three different facets of FTD-ALS into one coherent pathway.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Proteínas de Unión al ADN , Demencia Frontotemporal , Proteínas Serina-Treonina Quinasas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endosomas/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Ratones , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
7.
Neurobiol Dis ; 174: 105862, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36113749

RESUMEN

Krabbe Disease (KD) is an autosomal recessive disorder that results from loss-of-function mutations in the GALC gene, which encodes lysosomal enzyme galactosylceramidase (GALC). Functional deficiency of GALC is toxic to myelin-producing cells, which leads to progressive demyelination in both the central and peripheral nervous systems. It is hypothesized that accumulation of psychosine, which can only be degraded by GALC, is a primary initiator of pathologic cascades. Despite the central role of GALC in KD pathomechanism, investigations of GALC deficiency at a protein level are largely absent, due in part, to the lack of sensitive antibodies in the field. Leveraging two custom antibodies that can detect GALC at endogenous levels, we demonstrated that GALC protein is predominantly localized to oligodendrocytes in cerebral white matter of an infant brain, consistent with its functional role in myelination. Mature GALC could also be quantitatively detected as a 26 kDa band by western blotting and correlated to enzyme activity in brain tissues. The p.Ile562Thr polymorphic variant, which is over-represented in the KD population, was associated with reduced mature GALC protein and activity. In three infantile KD cases, homozygous null mutations in GALC lead to deficiency in total GALC protein and activity. Interestingly, although GALC activity was absent, normal levels of total GALC protein were detected by a sandwich ELISA using our custom antibodies in a later-onset KD brain, which suggests that the assay has the potential to differentiate infantile- and later-onset KD cases. Among the infantile KD cases, we quantified a 5-fold increase in psychosine levels, and observed increased levels of acid ceramidase, a key enzyme for psychosine production, and hyperglycosylated lysosomal-associated membrane protein 1, a marker for lysosomal activation, in periventricular white matter, a major pathological brain region, when compared with age-matched normal controls. While near complete demyelination was observed in these cases, we quantified that an early-infantile case (age of death at 10 months) had about 3-fold increases in both globoid cells, a pathological hallmark for KD, and CD8-positive T lymphocytes, a pathological marker for multiple sclerosis, in the white matter when compared with a slower progressing infantile case (age of death at 21 months), which suggests a positive correlation between clinical severity and neuropathology. Taken together, our findings have advanced the understanding of GALC protein biology in the context of normal and KD brain white matter. We also revealed new neuropathological changes that may provide insights to understand KD pathogenesis.


Asunto(s)
Leucodistrofia de Células Globoides , Sustancia Blanca , Humanos , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Psicosina/metabolismo , Sustancia Blanca/patología , Mutación
8.
Alzheimers Dement ; 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35920592

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) biomarkers are increasingly more reliable in predicting neuropathology. To facilitate interpretation of phosphorylated tau sites as an early fluid biomarker, we sought to characterize which neurofibrillary tangle maturity levels (pretangle, intermediary 1, mature tangle, intermediary 2, and ghost tangle) are recognized. METHODS: We queried the Florida Autopsied Multi-Ethnic (FLAME) cohort for cases ranging from Braak stages I through VI, excluding non-AD neuropathologies and tauopathies. Thioflavin-S staining was compared to immunohistochemical measures of phosphorylated threonine (pT) 181, pT205, pT217, and pT231 in two hippocampal subsectors across n = 24 cases. RESULTS: Each phosphorylated tau site immunohistochemically labeled early neurofibrillary tangle maturity levels compared to advanced levels recognized by thioflavin-S. Hippocampal burden generally increased with each Braak stage. DISCUSSION: These results provide neurobiologic evidence that these phosphorylated tau fluid biomarker sites are present during early neurofibrillary tangle maturity levels and may explain why these fluid biomarker measures are observed before symptom onset. HIGHLIGHTS: Immunohistochemical evaluation of four phosphorylated tau fluid biomarker sites. Earlier neurofibrillary tangle maturity levels recognized by phosphorylated tau in proline-rich region. Advanced tangle pathology is elevated in the subiculum compared to the cornu ammonis 1 of the hippocampus. Novel semi-quantitative frequency to calculate tangle maturity frequency.

9.
Front Cell Dev Biol ; 10: 863089, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386195

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited cerebellar ataxia caused by the expansion of a polyglutamine (polyQ) repeat in the gene encoding ATXN3. The polyQ expansion induces protein inclusion formation in the neurons of patients and results in neuronal degeneration in the cerebellum and other brain regions. We used adeno-associated virus (AAV) technology to develop a new mouse model of SCA3 that recapitulates several features of the human disease, including locomotor defects, cerebellar-specific neuronal loss, polyQ-expanded ATXN3 inclusions, and TDP-43 pathology. We also found that neurofilament light is elevated in the cerebrospinal fluid (CSF) of the SCA3 animals, and the expanded polyQ-ATXN3 protein can be detected in the plasma. Interestingly, the levels of polyQ-ATXN3 in plasma correlated with measures of cerebellar degeneration and locomotor deficits in 6-month-old SCA3 mice, supporting the hypothesis that this factor could act as a biomarker for SCA3.

10.
J Clin Invest ; 132(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34813500

RESUMEN

Vast numbers of differentially expressed genes and perturbed networks have been identified in Alzheimer's disease (AD), however, neither disease nor brain region specificity of these transcriptome alterations has been explored. Using RNA-Seq data from 231 temporal cortex and 224 cerebellum samples from patients with AD and progressive supranuclear palsy (PSP), a tauopathy, we identified a striking correlation in the directionality and magnitude of gene expression changes between these 2 neurodegenerative proteinopathies. Further, the transcriptomic changes in AD and PSP brains ware highly conserved between the temporal and cerebellar cortices, indicating that highly similar transcriptional changes occur in pathologically affected and grossly less affected, albeit functionally connected, areas of the brain. Shared up- or downregulated genes in AD and PSP are enriched in biological pathways. Many of these genes also have concordant protein changes and evidence of epigenetic control. These conserved transcriptomic alterations of 2 distinct proteinopathies in brain regions with and without significant gross neuropathology have broad implications. AD and other neurodegenerative diseases are likely characterized by common disease or compensatory pathways with widespread perturbations in the whole brain. These findings can be leveraged to develop multifaceted therapies and biomarkers that address these common, complex, and ubiquitous molecular alterations in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Transcriptoma , Anciano , Femenino , Humanos , Masculino
11.
Cell Rep ; 36(8): 109581, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433069

RESUMEN

Loss-of-function mutations in the progranulin gene (GRN), which encodes progranulin (PGRN), are a major cause of frontotemporal dementia (FTD). GRN-associated FTD is characterized by TDP-43 inclusions and neuroinflammation, but how PGRN loss causes disease remains elusive. We show that Grn knockout (KO) mice have increased microgliosis in white matter and an accumulation of myelin debris in microglial lysosomes in the same regions. Accumulation of myelin debris is also observed in white matter of patients with GRN-associated FTD. In addition, our findings also suggest that PGRN insufficiency in microglia leads to impaired lysosomal-mediated clearance of myelin debris. Finally, Grn KO mice that are deficient in cathepsin D (Ctsd), a key lysosomal enzyme, have augmented myelin debris and increased neuronal TDP-43 pathology. Together, our data strongly imply that PGRN loss affects microglial activation and lysosomal function, resulting in the accumulation of myelin debris and contributing to TDP-43 pathology.


Asunto(s)
Demencia Frontotemporal/metabolismo , Lisosomas/metabolismo , Microglía/metabolismo , Progranulinas/metabolismo , Sustancia Blanca/metabolismo , Animales , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Humanos , Lisosomas/patología , Masculino , Ratones , Ratones Noqueados , Microglía/patología , Progranulinas/genética , Sustancia Blanca/patología
12.
Brain Pathol ; 31(3): e12945, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33709463

RESUMEN

TMEM106B has been recently implicated in multiple neurodegenerative diseases. Here, Rademakers et al. report a late-onset cerebellar Purkinje cell loss and progressive decline in motor function and gait deficits in a conventional Tmem106b-/- mouse model. By using high-power microscopy and bulk RNA sequencing, the authors further identify lysosomal and immune dysfunction as potential underlying mechanisms of the Purkinje cell loss.


Asunto(s)
Células de Purkinje , Animales , Modelos Animales de Enfermedad , Ratones
13.
Cell Rep ; 34(11): 108843, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730588

RESUMEN

Tau accumulation is a major pathological hallmark of Alzheimer's disease (AD) and other tauopathies, but the mechanism(s) of tau aggregation remains unclear. Taking advantage of the identification of tau filament cores by cryoelectron microscopy, we demonstrate that the AD tau core possesses the intrinsic ability to spontaneously aggregate in the absence of an inducer, with antibodies generated against AD tau core filaments detecting AD tau pathology. The AD tau core also drives aggregation of full-length wild-type tau, increases seeding potential, and templates abnormal forms of tau present in brain homogenates and antemortem cerebrospinal fluid (CSF) from patients with AD in an ultrasensitive real-time quaking-induced conversion (QuIC) assay. Finally, we show that the filament cores in corticobasal degeneration (CBD) and Pick's disease (PiD) similarly assemble into filaments under physiological conditions. These results document an approach to modeling tau aggregation and have significant implications for in vivo investigation of tau transmission and biomarker development.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Anticuerpos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Degeneración Corticobasal/patología , Humanos , Enfermedad de Pick/patología , Agregado de Proteínas , Factores de Tiempo , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/ultraestructura
14.
Front Cell Dev Biol ; 9: 809942, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096836

RESUMEN

The aberrant translation of a repeat expansion in chromosome 9 open reading frame 72 (C9orf72), the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), results in the accumulation of toxic dipeptide repeat (DPR) proteins in the central nervous system We have found that, among the sense DPR proteins, HDAC6 specifically interacts with the poly (GA) and co-localizes with inclusions in both patient tissue and a mouse model of this disease (c9FTD/ALS). Overexpression of HDAC6 increased poly (GA) levels in cultured cells independently of HDAC6 deacetylase activity, suggesting that HDAC6 can modulate poly (GA) pathology through a mechanism that depends upon their physical interaction. Moreover, decreasing HDAC6 expression by stereotaxic injection of antisense oligonucleotides significantly reduced the number of poly (GA) inclusions in c9FTD/ALS mice. These findings suggest that pharmacologically reducing HDAC6 levels could be of therapeutic value in c9FTD/ALS.

15.
Sci Transl Med ; 12(559)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32878979

RESUMEN

TAR DNA-binding protein 43 (TDP-43) inclusions are a pathological hallmark of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), including cases caused by G4C2 repeat expansions in the C9orf72 gene (c9FTD/ALS). Providing mechanistic insight into the link between C9orf72 mutations and TDP-43 pathology, we demonstrated that a glycine-arginine repeat protein [poly(GR)] translated from expanded G4C2 repeats was sufficient to promote aggregation of endogenous TDP-43. In particular, toxic poly(GR) proteins mediated sequestration of full-length TDP-43 in an RNA-independent manner to induce cytoplasmic TDP-43 inclusion formation. Moreover, in GFP-(GR)200 mice, poly(GR) caused the mislocalization of nucleocytoplasmic transport factors and nuclear pore complex proteins. These mislocalization events resulted in the aberrant accumulation of endogenous TDP-43 in the cytoplasm where it co-aggregated with poly(GR). Last, we demonstrated that treating G4C2 repeat-expressing mice with repeat-targeting antisense oligonucleotides lowered poly(GR) burden, which was accompanied by reduced TDP-43 pathology and neurodegeneration, including lowering of plasma neurofilament light (NFL) concentration. These results contribute to clarification of the mechanism by which poly(GR) drives TDP-43 proteinopathy, confirm that G4C2-targeted therapeutics reduce TDP-43 pathology in vivo, and demonstrate that alterations in plasma NFL provide insight into the therapeutic efficacy of disease-modifying treatments.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Proteinopatías TDP-43 , Esclerosis Amiotrófica Lateral/genética , Animales , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Ratones
16.
EMBO Rep ; 21(10): e50197, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32761777

RESUMEN

Progranulin (PGRN) and transmembrane protein 106B (TMEM106B) are important lysosomal proteins implicated in frontotemporal lobar degeneration (FTLD) and other neurodegenerative disorders. Loss-of-function mutations in progranulin (GRN) are a common cause of FTLD, while TMEM106B variants have been shown to act as disease modifiers in FTLD. Overexpression of TMEM106B leads to lysosomal dysfunction, while loss of Tmem106b ameliorates lysosomal and FTLD-related pathologies in young Grn-/- mice, suggesting that lowering TMEM106B might be an attractive strategy for therapeutic treatment of FTLD-GRN. Here, we generate and characterize older Tmem106b-/- Grn-/- double knockout mice, which unexpectedly show severe motor deficits and spinal cord motor neuron and myelin loss, leading to paralysis and premature death at 11-12 months. Compared to Grn-/- , Tmem106b-/- Grn-/- mice have exacerbated FTLD-related pathologies, including microgliosis, astrogliosis, ubiquitin, and phospho-Tdp43 inclusions, as well as worsening of lysosomal and autophagic deficits. Our findings confirm a functional interaction between Tmem106b and Pgrn and underscore the need to rethink whether modulating TMEM106B levels is a viable therapeutic strategy.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Animales , Degeneración Lobar Frontotemporal/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana , Ratones , Ratones Noqueados , Mutación , Proteínas del Tejido Nervioso , Progranulinas/genética
17.
Brain ; 143(6): 1905-1919, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32504082

RESUMEN

Genetic variants that define two distinct haplotypes at the TMEM106B locus have been implicated in multiple neurodegenerative diseases and in healthy brain ageing. In frontotemporal dementia (FTD), the high expressing TMEM106B risk haplotype was shown to increase susceptibility for FTD with TDP-43 inclusions (FTD-TDP) and to modify disease penetrance in progranulin mutation carriers (FTD-GRN). To elucidate the biological function of TMEM106B and determine whether lowering TMEM106B may be a viable therapeutic strategy, we performed brain transcriptomic analyses in 8-month-old animals from our recently developed Tmem106b-/- mouse model. We included 10 Tmem106b+/+ (wild-type), 10 Tmem106b+/- and 10 Tmem106-/- mice. The most differentially expressed genes (153 downregulated and 60 upregulated) were identified between Tmem106b-/- and wild-type animals, with an enrichment for genes implicated in myelination-related cellular processes including axon ensheathment and oligodendrocyte differentiation. Co-expression analysis also revealed that the most downregulated group of correlated genes was enriched for myelination-related processes. We further detected a significant loss of OLIG2-positive cells in the corpus callosum of Tmem106b-/- mice, which was present already in young animals (21 days) and persisted until old age (23 months), without worsening. Quantitative polymerase chain reaction revealed a reduction of differentiated but not undifferentiated oligodendrocytes cellular markers. While no obvious changes in myelin were observed at the ultrastructure levels in unchallenged animals, treatment with cuprizone revealed that Tmem106b-/- mice are more susceptible to cuprizone-induced demyelination and have a reduced capacity to remyelinate, a finding which we were able to replicate in a newly generated Tmem106b CRISPR/cas9 knock-out mouse model. Finally, using a TMEM106B HeLa knock-out cell line and primary cultured oligodendrocytes, we determined that loss of TMEM106B leads to abnormalities in the distribution of lysosomes and PLP1. Together these findings reveal an important function for TMEM106B in myelination with possible consequences for therapeutic strategies aimed at lowering TMEM106B levels.


Asunto(s)
Demencia Frontotemporal/genética , Demencia Frontotemporal/terapia , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Animales , Proteínas de Unión al ADN/metabolismo , Femenino , Expresión Génica/genética , Haplotipos , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Fibras Nerviosas Mielínicas/patología , Proteínas del Tejido Nervioso/metabolismo , Polimorfismo de Nucleótido Simple/genética , Transcriptoma/genética
18.
Cell Rep ; 31(5): 107616, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32375043

RESUMEN

A G4C2 hexanucleotide repeat expansion in an intron of C9orf72 is the most common cause of frontal temporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). A remarkably similar intronic TG3C2 repeat expansion is associated with spinocerebellar ataxia 36 (SCA36). Both expansions are widely expressed, form RNA foci, and can undergo repeat-associated non-ATG (RAN) translation to form similar dipeptide repeat proteins (DPRs). Yet, these diseases result in the degeneration of distinct subsets of neurons. We show that the expression of these repeat expansions in mice is sufficient to recapitulate the unique features of each disease, including this selective neuronal vulnerability. Furthermore, only the G4C2 repeat induces the formation of aberrant stress granules and pTDP-43 inclusions. Overall, our results demonstrate that the pathomechanisms responsible for each disease are intrinsic to the individual repeat sequence, highlighting the importance of sequence-specific RNA-mediated toxicity in each disorder.


Asunto(s)
Proteína C9orf72/genética , Proteínas Nucleares/genética , ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Ratones , Neuronas/metabolismo
19.
Acta Neuropathol Commun ; 7(1): 36, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30845985

RESUMEN

Tauopathies are neurodegenerative disorders characterized by aggregation of microtubule associated tau protein in neurons and glia. They are clinically and pathologically heterogeneous depending on the isoform of tau protein that accumulates (three or four 31-to-32-amino-acid repeats [3R or 4R] in the microtubule binding domain), as well as the cellular and neuroanatomical distribution of tau pathology. Growing evidence suggests that distinct tau conformers may contribute to the characteristic features of various tauopathies. Globular glial tauopathy (GGT) is a rare 4R tauopathy with globular cytoplasmic inclusions within neurons and glial cells. Given the unique cellular distribution and morphology of tau pathology in GGT, we sought to determine if tau species in GGT had distinctive biological properties. To address this question, we performed seeding analyses with postmortem brain tissues using a commercial tau biosensor cell line. We found that brain lysates from GGT cases had significantly higher seeding competency than other tauopathies, including corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and Alzheimer's disease (AD). The robust seeding activity of GGT brain lysates was independent of phosphorylated tau burden and diminished upon removal of tau from samples, suggesting that seeding properties were indeed mediated by tau in the lysates. In addition, cellular inclusions in the tau biosensor cell line induced by GGT had a distinct, globular morphology that was markedly different from inclusions induced by other tauopathies, further highlighting the unique nature of tau species in GGT. Characterization of different tau species in GGT showed that detergent-insoluble, fibril-like tau contained the highest seeding activity, as reflected in its ability to increase tau aggregation in primary glial cultures. Taken together, our data suggest that unique seeding properties differentiate GGT-tau from other tauopathies, which provides new insight into pathogenic heterogeneity of primary neurodegenerative tauopathies.


Asunto(s)
Encéfalo/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/patología , Química Encefálica/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neuroglía/química , Neuroglía/patología , Neuronas/química , Neuronas/patología , Tauopatías/patología , Proteínas tau/análisis
20.
Science ; 363(6428)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30765536

RESUMEN

How hexanucleotide GGGGCC (G4C2) repeat expansions in C9orf72 cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is not understood. We developed a mouse model engineered to express poly(PR), a proline-arginine (PR) dipeptide repeat protein synthesized from expanded G4C2 repeats. The expression of green fluorescent protein-conjugated (PR)50 (a 50-repeat PR protein) throughout the mouse brain yielded progressive brain atrophy, neuron loss, loss of poly(PR)-positive cells, and gliosis, culminating in motor and memory impairments. We found that poly(PR) bound DNA, localized to heterochromatin, and caused heterochromatin protein 1α (HP1α) liquid-phase disruptions, decreases in HP1α expression, abnormal histone methylation, and nuclear lamina invaginations. These aberrations of histone methylation, lamins, and HP1α, which regulate heterochromatin structure and gene expression, were accompanied by repetitive element expression and double-stranded RNA accumulation. Thus, we uncovered mechanisms by which poly(PR) may contribute to the pathogenesis of C9orf72-associated FTD and ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/metabolismo , Dipéptidos/metabolismo , Heterocromatina/patología , ARN Bicatenario/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/metabolismo , Proteína C9orf72/genética , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Dipéptidos/genética , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Lámina Nuclear/patología , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...