Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(8): 1308-1323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990806

RESUMEN

BACKGROUND AND PURPOSE: Sepsis-surviving adult individuals commonly develop immunosuppression and increased susceptibility to secondary infections, an outcome mediated by the axis IL-33/ILC2s/M2 macrophages/Tregs. Nonetheless, the long-term immune consequences of paediatric sepsis are indeterminate. We sought to investigate the role of age in the genesis of immunosuppression following sepsis. EXPERIMENTAL APPROACH: Here, we compared the frequency of Tregs, the activation of the IL-33/ILC2s axis in M2 macrophages and the DNA methylation of epithelial lung cells from post-septic infant and adult mice. Likewise, sepsis-surviving mice were inoculated intranasally with Pseudomonas aeruginosa or by subcutaneous inoculation of the B16 melanoma cell line. Finally, blood samples from sepsis-surviving patients were collected and the concentration of IL-33 and Tregs frequency were assessed. KEY RESULTS: In contrast to 6-week-old mice, 2-week-old mice were resistant to secondary infection and did not show impairment in tumour controls upon melanoma challenge. Mechanistically, increased IL-33 levels, Tregs expansion, and activation of ILC2s and M2-macrophages were observed in 6-week-old but not 2-week-old post-septic mice. Moreover, impaired IL-33 production in 2-week-old post-septic mice was associated with increased DNA methylation in lung epithelial cells. Notably, IL-33 treatment boosted the expansion of Tregs and induced immunosuppression in 2-week-old mice. Clinically, adults but not paediatric post-septic patients exhibited higher counts of Tregs and seral IL-33 levels. CONCLUSION AND IMPLICATIONS: These findings demonstrate a crucial and age-dependent role for IL-33 in post-sepsis immunosuppression. Thus, a better understanding of this process may lead to differential treatments for adult and paediatric sepsis.


Asunto(s)
Interleucina-33 , Sepsis , Humanos , Ratones , Animales , Niño , Inmunidad Innata , Linfocitos/metabolismo , Linfocitos/patología , Terapia de Inmunosupresión
2.
Science ; 381(6662): eabq5202, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37676943

RESUMEN

Kupffer cells (KCs) are localized in liver sinusoids but extend pseudopods to parenchymal cells to maintain their identity and serve as the body's central bacterial filter. Liver cirrhosis drastically alters vascular architecture, but how KCs adapt is unclear. We used a mouse model of liver fibrosis and human tissue to examine immune adaptation. Fibrosis forced KCs to lose contact with parenchymal cells, down-regulating "KC identity," which rendered them incapable of clearing bacteria. Commensals stimulated the recruitment of monocytes through CD44 to a spatially distinct vascular compartment. There, recruited monocytes formed large aggregates of multinucleated cells (syncytia) that expressed phenotypical KC markers and displayed enhanced bacterial capture ability. Syncytia formed via CD36 and were observed in human cirrhosis as a possible antimicrobial defense that evolved with fibrosis.


Asunto(s)
Infecciones de Transmisión Sanguínea , Células Gigantes , Macrófagos del Hígado , Cirrosis Hepática , Animales , Humanos , Ratones , Células Gigantes/inmunología , Células Gigantes/microbiología , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/microbiología , Cirrosis Hepática/inmunología , Cirrosis Hepática/microbiología , Cirrosis Hepática/patología , Infecciones de Transmisión Sanguínea/inmunología , Modelos Animales de Enfermedad
3.
Blood Adv ; 7(15): 4170-4181, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37307197

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters the respiratory tract, where it infects the alveoli epithelial lining. However, patients have sequelae that extend well beyond the alveoli into the pulmonary vasculature and, perhaps, beyond to the brain and other organs. Because of the dynamic events within blood vessels, histology does not report platelet and neutrophil behavior. Because of the rapid nontranscriptional response of these cells, neither single-cell RNA sequencing nor proteomics report robustly on their critical behaviors. We used intravital microscopy in level-3 containment to examine the pathogenesis of SARS-CoV-2 within 3 organs in mice expressing human angiotensin converting enzyme 2 (ACE-2) ubiquitously (CAG-AC-70) or on epithelium (K18-promoter). Using a neon-green SARS-CoV-2, we observed both the epithelium and endothelium infected in AC70 mice but only the epithelium in K18 mice. There were increased neutrophils in the microcirculation but not in the alveoli of the lungs of AC70 mice. Platelets formed large aggregates in the pulmonary capillaries. Despite only neurons being infected within the brain, profound neutrophil adhesion forming the nidus of large platelet aggregates were observed in the cerebral microcirculation, with many nonperfused microvessels. Neutrophils breached the brain endothelial layer associated with a significant disruption of the blood-brain-barrier. Despite ubiquitous ACE-2 expression, CAG-AC-70 mice had very small increases in blood cytokine, no increase in thrombin, no infected circulating cells, and no liver involvement suggesting limited systemic effects. In summary, our imaging of SARS-CoV-2-infected mice gave direct evidence that there is a significant perturbation locally in the lung and brain microcirculation induced by local viral infection leading to increased local inflammation and thrombosis in these organs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , COVID-19/patología , Inflamación/patología , Pulmón/diagnóstico por imagen , Pulmón/patología
4.
Immunol Rev ; 314(1): 399-412, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36440642

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in more than 6 million deaths worldwide. COVID-19 is a respiratory disease characterized by pulmonary dysfunction leading to acute respiratory distress syndrome (ARDs), as well as disseminated coagulation, and multi-organ dysfunction. Neutrophils and neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of COVID-19. In this review, we highlight key gaps in knowledge, discuss the heterogeneity of neutrophils during the evolution of the disease, how they can contribute to COVID-19 pathogenesis, and potential therapeutic strategies that target neutrophil-mediated inflammatory responses.


Asunto(s)
COVID-19 , Trampas Extracelulares , Humanos , COVID-19/patología , Neutrófilos , SARS-CoV-2
5.
J Infect Dis ; 221(9): 1542-1553, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-31783409

RESUMEN

BACKGROUND: Liver X receptors (LXRs) are nuclear receptors activated by oxidized lipids and were previously implicated in several metabolic development and inflammatory disorders. Although neutrophils express both LXR-α and LXR-ß, the consequences of their activation, particularly during sepsis, remain unknown. METHODS: We used the model of cecal ligation and puncture (CLP) to investigate the role of LXR activation during sepsis. RESULTS: In this study, we verified that LXR activation reduces neutrophil chemotactic and killing abilities in vitro. Mice treated with LXR agonists showed higher sepsis-induced mortality, which could be associated with reduced neutrophil infiltration at the infectious foci, increased bacteremia, systemic inflammatory response, and multiorgan failure. In contrast, septic mice treated with LXR antagonist showed increased number of neutrophils in the peritoneal cavity, reduced bacterial load, and multiorgan dysfunction. More important, neutrophils from septic patients showed increased ABCA1 messenger ribonucleic acid levels (a marker of LXR activation) and impaired chemotactic response toward CXCL8 compared with cells from healthy individuals. CONCLUSIONS: Therefore, our findings suggest that LXR activation impairs neutrophil functions, which might contribute to poor sepsis outcome.


Asunto(s)
Receptores X del Hígado/metabolismo , Neutrófilos/patología , Sepsis/inmunología , Sepsis/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Adulto , Animales , Ciego/microbiología , Ciego/cirugía , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación , Interleucina-8/metabolismo , Ligadura , Receptores X del Hígado/agonistas , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Insuficiencia Multiorgánica/inmunología , Insuficiencia Multiorgánica/microbiología , Infiltración Neutrófila/inmunología , Neutrófilos/metabolismo , Punciones , Sepsis/microbiología
6.
Crit Care ; 23(1): 113, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30961634

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) are innate defense mechanisms that are also implicated in the pathogenesis of organ dysfunction. However, the role of NETs in pediatric sepsis is unknown. METHODS: Infant (2 weeks old) and adult (6 weeks old) mice were submitted to sepsis by intraperitoneal (i.p.) injection of bacteria suspension or lipopolysaccharide (LPS). Neutrophil infiltration, bacteremia, organ injury, and concentrations of cytokine, NETs, and DNase in the plasma were measured. Production of reactive oxygen and nitrogen species and release of NETs by neutrophils were also evaluated. To investigate the functional role of NETs, mice undergoing sepsis were treated with antibiotic plus rhDNase and the survival, organ injury, and levels of inflammatory markers and NETs were determined. Blood samples from pediatric and adult sepsis patients were collected and the concentrations of NETs measured. RESULTS: Infant C57BL/6 mice subjected to sepsis or LPS-induced endotoxemia produced significantly higher levels of NETs than the adult mice. Moreover, compared to that of the adult mice, this outcome was accompanied by increased organ injury and production of inflammatory cytokines. The increased NETs were associated with elevated expression of Padi4 and histone H3 citrullination in the neutrophils. Furthermore, treatment of infant septic mice with rhDNase or a PAD-4 inhibitor markedly attenuated sepsis. Importantly, pediatric septic patients had high levels of NETs, and the severity of pediatric sepsis was positively correlated with the level of NETs. CONCLUSION: This study reveals a hitherto unrecognized mechanism of pediatric sepsis susceptibility and suggests that NETs represents a potential target to improve clinical outcomes of sepsis.


Asunto(s)
Trampas Extracelulares/microbiología , Sepsis/terapia , Animales , Carga Bacteriana/métodos , Brasil , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL/sangre , Ratones Endogámicos C57BL/microbiología , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/patología , Sepsis/mortalidad , Sepsis/patología
7.
Blood ; 133(20): 2178-2185, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30898862

RESUMEN

Neutrophils are an absolutely essential part of the innate immune system, playing an essential role in the control of infectious diseases but more recently are also being viewed as important players in tissue repair. Neutrophils are able to counteract an infection through phagocytosis and/or the release of neutrophil extracellular traps (NETs). By contrast, neutrophils help repair damaged tissues, limiting NET production but still phagocytosing debris. However, when inflammation is recurrent, or the inciting agent persists, neutrophils through a frustrated inability to resolve the problem can release NETs to exacerbate tissue damage during inappropriate inflammation. In this review, we discuss the mechanisms of NET formation, as well as the apparent paradoxical role of neutrophils and NETs in host defense, chronic inflammation, and tissue disrepair.


Asunto(s)
Trampas Extracelulares/inmunología , Inflamación/inmunología , Neutrófilos/inmunología , Enfermedad Aguda , Animales , Enfermedad Crónica , Humanos , Inflamación/patología , Neutrófilos/patología , Fagocitosis
8.
Inflamm Res ; 67(5): 435-443, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29450586

RESUMEN

OBJECTIVE AND DESIGN: The objective of this study was to investigate the role of Nod1 in the recruitment of neutrophils into the infection site and in the establishment of the inflammatory response elicited by a clinical isolate strain of P. aeruginosa in vivo, while comparing it to the well-established role of MyD88 in this process. SUBJECTS: Wild-type, Nod1-/- and MyD88-/- mice, all with a C57Bl/6 background. METHODS: Mice were intranasally infected with Pseudomonas aeruginosa DZ605. Bronchoalveolar lavage and blood were harvested 6 or 20 h post-infection for evaluating bacterial load, chemokine levels and neutrophil migration. Survival post-infection was also observed. RESULTS: We show here that wild-type and Nod1-/- mice induce similar lung chemokine levels, neutrophil recruitment, and bacterial load, thus leading to equal survival rates upon P. aeruginosa pulmonary infection. Furthermore, we confirmed the essential role of MyD88-dependent signalling in recruiting neutrophils and controlling P. aeruginosa-induced pulmonary infection. CONCLUSION: The results suggest that in contrast to MyD88, under our experimental conditions, the absence of Nod1 does not impair the recruitment of neutrophils in response to P. aeruginosa DZ605.


Asunto(s)
Factor 88 de Diferenciación Mieloide/genética , Proteína Adaptadora de Señalización NOD1/genética , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa , Animales , Bacteriemia/microbiología , Líquido del Lavado Bronquioalveolar/microbiología , Quimiocinas/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Transducción de Señal/genética
9.
PLoS Pathog ; 13(8): e1006502, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28771586

RESUMEN

Legionella pneumophila is a Gram-negative, flagellated bacterium that survives in phagocytes and causes Legionnaires' disease. Upon infection of mammalian macrophages, cytosolic flagellin triggers the activation of Naip/NLRC4 inflammasome, which culminates in pyroptosis and restriction of bacterial replication. Although NLRC4 and caspase-1 participate in the same inflammasome, Nlrc4-/- mice and their macrophages are more permissive to L. pneumophila replication compared with Casp1/11-/-. This feature supports the existence of a pathway that is NLRC4-dependent and caspase-1/11-independent. Here, we demonstrate that caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in response to flagellin-positive bacteria. Accordingly, caspase-8 is activated in Casp1/11-/- macrophages in a process dependent on flagellin, Naip5, NLRC4 and ASC. Silencing caspase-8 in Casp1/11-/- cells culminated in macrophages that were as susceptible as Nlrc4-/- for the restriction of L. pneumophila replication. Accordingly, macrophages and mice deficient in Asc/Casp1/11-/- were more susceptible than Casp1/11-/- and as susceptible as Nlrc4-/- for the restriction of infection. Mechanistically, we found that caspase-8 activation triggers gasdermin-D-independent pore formation and cell death. Interestingly, caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in wild-type macrophages, but it is only activated when caspase-1 or gasdermin-D is inhibited. Our data suggest that caspase-8 activation in the Naip5/NLRC4/ASC inflammasome enable induction of cell death when caspase-1 or gasdermin-D is suppressed.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Caspasa 1/inmunología , Caspasa 8/inmunología , Inflamasomas/inmunología , Enfermedad de los Legionarios/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Adaptadoras de Señalización CARD , Proteínas de Unión al Calcio , Caspasa 1/metabolismo , Caspasa 8/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/inmunología , Ensayo de Inmunoadsorción Enzimática , Técnicas de Silenciamiento del Gen , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Legionella pneumophila , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Inhibidora de la Apoptosis Neuronal , Proteínas de Unión a Fosfato , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
J Infect Dis ; 215(3): 440-451, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27932612

RESUMEN

BACKGROUND: Legionella longbeachae (Llo) and Legionella pneumophila (Lpn) are the most common pneumonia-causing agents of the genus. Although both species can be lethal to humans and are highly prevalent, little is known about the molecular pathogenesis of Llo infections. In murine models of infection, Lpn infection is self-limited, whereas Llo infection is lethal. METHODS: We used mouse macrophages, human macrophages, human epithelial cells, and mouse infections in vivo to evaluate multiple parameters of the infection. RESULTS: We determined that the Llo Dot/Icm secretion system is critical for virulence. Different than Lpn, Llo disseminates and the animals develop a severe pulmonary failure, as demonstrated by lung mechanics and blood oxygenation assays. As compared to Lpn, Llo is immunologically silent and fails to trigger the production of cytokines in human pulmonary epithelial cells and in mouse and human macrophages. Infections in Tnfr1-/-, Ifng-/-, and Il12p40-/- mice supported the participation of cytokines for the resistance phenotype. CONCLUSIONS: Both Lpn and Llo require the Dot/Icm system for pathogenesis, but the infection outcome is strikingly different. Llo is immunologically silent, highly virulent, and lethal. The differences reported herein may reflect unappreciated clinical differences in patients infected with Lpn or Llo.


Asunto(s)
Legionella longbeachae/inmunología , Legionella longbeachae/patogenicidad , Legionelosis/inmunología , Animales , Citocinas/metabolismo , Resistencia a la Enfermedad/inmunología , Femenino , Humanos , Legionella pneumophila/inmunología , Legionelosis/microbiología , Legionelosis/patología , Legionelosis/fisiopatología , Leucocitos Mononucleares , Pulmón/fisiopatología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Especificidad de la Especie , Virulencia
11.
Pharmacol Res ; 117: 1-8, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27979692

RESUMEN

Sepsis is one of the main causes of mortality in hospitalized patients. Despite the recent technical advances and the development of novel generation of antibiotics, severe sepsis remains a major clinical and scientific challenge in modern medicine. Unsuccessful efforts have been dedicated to the search of therapeutic options to treat the deleterious inflammatory components of sepsis. Recent findings on neuronal networks controlling immunity raised expectations for novel therapeutic strategies to promote the regulation of sterile inflammation, such as autoimmune diseases. Interesting studies have dissected the anatomical constituents of the so-called "cholinergic anti-inflammatory pathway", suggesting that electrical vagus nerve stimulation and pharmacological activation of beta-2 adrenergic and alpha-7 nicotinic receptors could be alternative strategies for improving inflammatory conditions. However, the literature on infectious diseases, such as sepsis, is still controversial and, therefore, the real therapeutic potential of this neuroimmune pathway is not well defined. In this review, we will discuss the beneficial and detrimental effects of neural manipulation in sepsis, which depend on the multiple variables of the immune system and the nature of the infection. These observations suggest future critical studies to validate the clinical implications of vagal parasympathetic signaling in sepsis treatment.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colinérgicos/farmacología , Colinérgicos/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Humanos , Sistema Inmunológico/efectos de los fármacos , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Nervio Vago/efectos de los fármacos
12.
Sci Rep ; 6: 36401, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27819273

RESUMEN

Isoflavonoids have been largely studied due to their distinct biological activities identified thus far. Herein, we evaluated the activity of neovestitol, an isoflavonoid isolated from Brazilian red propolis, in acute and chronic inflammation. As for acute inflammation, we found that neovestitol reduced neutrophil migration, leukocyte rolling and adhesion, as well as expression of ICAM-1 in the mesenteric microcirculation during lipopolysaccharide-induced acute peritonitis. No changes were observed in the levels of TNF-α, CXCL1/KC and CXCL2/MIP-2 upon pretreatment with neovestitol. The administration of an inducible nitric oxide synthase (iNOS) inhibitor abolished the inhibitory effects of neovestitol in neutrophil migration and ICAM-1 expression. Nitrite levels increased upon treatment with neovestitol. No effects of neovestitol were observed on the chemotaxis of neutrophils in vitro. As for chronic inflammation, neovestitol also reduced the clinical score and joint damage in a collagen-induced arthritis model. There was no change in the frequency of IL-17-producing TCD4+ cells. In addition, pretreatment with neovestitol reduced the levels of IL-6. These results demonstrate a potential anti-inflammatory activity of neovestitol, which may be useful for therapeutic purposes and/or as a nutraceutical.


Asunto(s)
Artritis Experimental/prevención & control , Flavonoides/uso terapéutico , Interleucina-6/metabolismo , Óxido Nítrico/metabolismo , Peritonitis/prevención & control , Própolis/química , Enfermedad Aguda , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Experimental/etiología , Brasil , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Enfermedad Crónica , Citocinas/metabolismo , Flavonoides/química , Flavonoides/farmacología , Guanidinas/farmacología , Lipopolisacáridos/toxicidad , Venas Mesentéricas/efectos de los fármacos , Venas Mesentéricas/metabolismo , Venas Mesentéricas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Peritonitis/etiología , Própolis/metabolismo
13.
J Nat Prod ; 79(4): 954-60, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26938776

RESUMEN

Vestitol is an isoflavonoid isolated from Brazilian red propolis with potential anti-inflammatory activity. This study investigated the mechanism of action of vestitol on the modulation of neutrophil migration in the inflammatory process. Pre-treatment with vestitol at 1, 3, or 10 mg/kg reduced LPS- or mBSA-induced neutrophil migration and the release of CXCL1/KC and CXCL2/MIP-2 in vivo. Likewise, pre-treatment with vestitol at 1, 3, or 10 µM reduced the levels of CXCL1/KC and CXCL2/MIP-2 in macrophage supernatants in vitro. Moreover, the administration of vestitol (10 mg/kg) reduced leukocyte rolling and adherence in the mesenteric microcirculation of mice. The pre-treatment with vestitol (10 mg/kg) in iNOS(-/-) mice did not block its activity concerning neutrophil migration. With regard to the activity of vestitol on neutrophils isolated from the bone marrow of mice, there was a reduction on the chemotaxis of CXCL2/MIP-2 or LTB4-induced neutrophils and on calcium influx after pre-treatment with the compound at 3 or 10 µM. There was no change in CXCR2 expression by neutrophils treated with vestitol at 10 µM. These findings demonstrate that vestitol is a promising novel anti-inflammatory agent.


Asunto(s)
Antiinflamatorios/aislamiento & purificación , Flavonoides/aislamiento & purificación , Neutrófilos/efectos de los fármacos , Própolis/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Brasil , Quimiocina CXCL1 , Flavonoides/química , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Infiltración Neutrófila , Óxido Nítrico Sintasa de Tipo II/genética
14.
PLoS One ; 9(8): e103734, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25084278

RESUMEN

Pathogen recognition and triggering of the inflammatory response following infection in mammals depend mainly on Toll-like and Nod-like receptors. Here, we evaluated the role of Nod1, Nod2 and MyD88-dependent signaling in the chemokine production and neutrophil recruitment to the infectious site during sepsis induced by cecal ligation and puncture (CLP) in C57Bl/6 mice. We demonstrate that Nod1 and Nod2 are not involved in the release of chemokines and recruitment of neutrophils to the infectious site during CLP-induced septic peritonitis because these events were similar in wild-type, Nod1-, Nod2-, Nod1/Nod2- and Rip2-deficient mice. Consequently, the local and systemic bacterial loads were not altered. Accordingly, neither Nod1 nor Nod2 was involved in the production of the circulating cytokines and in the accumulation of leukocytes in the lungs. By contrast, we showed that MyD88-dependent signaling is crucial for the establishment of the local inflammatory response during CLP-induced sepsis. MyD88-deficient mice were susceptible to sepsis because of an impaired local production of chemokines and defective neutrophil recruitment to the infection site. Altogether, these data show that Nod1, Nod2 and Rip2 are not required for local chemokine production and neutrophil recruitment during CLP-induced sepsis, and they reinforce the importance of MyD88-dependent signaling for initiation of a protective host response.


Asunto(s)
Factor 88 de Diferenciación Mieloide/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Sepsis/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD2/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Sepsis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...