Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
BMC Bioinformatics ; 24(1): 457, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38053078

RESUMEN

BACKGROUND: Biclustering is increasingly used in biomedical data analysis, recommendation tasks, and text mining domains, with hundreds of biclustering algorithms proposed. When assessing the performance of these algorithms, more than real datasets are required as they do not offer a solid ground truth. Synthetic data surpass this limitation by producing reference solutions to be compared with the found patterns. However, generating synthetic datasets is challenging since the generated data must ensure reproducibility, pattern representativity, and real data resemblance. RESULTS: We propose G-Bic, a dataset generator conceived to produce synthetic benchmarks for the normative assessment of biclustering algorithms. Beyond expanding on aspects of pattern coherence, data quality, and positioning properties, it further handles specificities related to mixed-type datasets and time-series data.G-Bic has the flexibility to replicate real data regularities from diverse domains. We provide the default configurations to generate reproducible benchmarks to evaluate and compare diverse aspects of biclustering algorithms. Additionally, we discuss empirical strategies to simulate the properties of real data. CONCLUSION: G-Bic is a parametrizable generator for biclustering analysis, offering a solid means to assess biclustering solutions according to internal and external metrics robustly.


Asunto(s)
Benchmarking , Perfilación de la Expresión Génica , Reproducibilidad de los Resultados , Análisis por Conglomerados , Algoritmos
3.
Artif Intell Med ; 142: 102588, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316101

RESUMEN

BACKGROUND: Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterised by the progressive loss of motor neurons in the brain and spinal cord. The fact that ALS's disease course is highly heterogeneous, and its determinants not fully known, combined with ALS's relatively low prevalence, renders the successful application of artificial intelligence (AI) techniques particularly arduous. OBJECTIVE: This systematic review aims at identifying areas of agreement and unanswered questions regarding two notable applications of AI in ALS, namely the automatic, data-driven stratification of patients according to their phenotype, and the prediction of ALS progression. Differently from previous works, this review is focused on the methodological landscape of AI in ALS. METHODS: We conducted a systematic search of the Scopus and PubMed databases, looking for studies on data-driven stratification methods based on unsupervised techniques resulting in (A) automatic group discovery or (B) a transformation of the feature space allowing patient subgroups to be identified; and for studies on internally or externally validated methods for the prediction of ALS progression. We described the selected studies according to the following characteristics, when applicable: variables used, methodology, splitting criteria and number of groups, prediction outcomes, validation schemes, and metrics. RESULTS: Of the starting 1604 unique reports (2837 combined hits between Scopus and PubMed), 239 were selected for thorough screening, leading to the inclusion of 15 studies on patient stratification, 28 on prediction of ALS progression, and 6 on both stratification and prediction. In terms of variables used, most stratification and prediction studies included demographics and features derived from the ALSFRS or ALSFRS-R scores, which were also the main prediction targets. The most represented stratification methods were K-means, and hierarchical and expectation-maximisation clustering; while random forests, logistic regression, the Cox proportional hazard model, and various flavours of deep learning were the most widely used prediction methods. Predictive model validation was, albeit unexpectedly, quite rarely performed in absolute terms (leading to the exclusion of 78 eligible studies), with the overwhelming majority of included studies resorting to internal validation only. CONCLUSION: This systematic review highlighted a general agreement in terms of input variable selection for both stratification and prediction of ALS progression, and in terms of prediction targets. A striking lack of validated models emerged, as well as a general difficulty in reproducing many published studies, mainly due to the absence of the corresponding parameter lists. While deep learning seems promising for prediction applications, its superiority with respect to traditional methods has not been established; there is, instead, ample room for its application in the subfield of patient stratification. Finally, an open question remains on the role of new environmental and behavioural variables collected via novel, real-time sensors.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Inteligencia Artificial , Encéfalo , Análisis por Conglomerados , Bases de Datos Factuales
4.
BMC Bioinformatics ; 23(1): 192, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606701

RESUMEN

BACKGROUND: The effectiveness of biclustering, simultaneous clustering of rows and columns in a data matrix, was shown in gene expression data analysis. Several researchers recognize its potentialities in other research areas. Nevertheless, the last two decades have witnessed the development of a significant number of biclustering algorithms targeting gene expression data analysis and a lack of consistent studies exploring the capacities of biclustering outside this traditional application domain. RESULTS: This work evaluates the potential use of biclustering in fMRI time series data, targeting the Region × Time dimensions by comparing seven state-in-the-art biclustering and three traditional clustering algorithms on artificial and real data. It further proposes a methodology for biclustering evaluation beyond gene expression data analysis. The results discuss the use of different search strategies in both artificial and real fMRI time series showed the superiority of exhaustive biclustering approaches, obtaining the most homogeneous biclusters. However, their high computational costs are a challenge, and further work is needed for the efficient use of biclustering in fMRI data analysis. CONCLUSIONS: This work pinpoints avenues for the use of biclustering in spatio-temporal data analysis, in particular neurosciences applications. The proposed evaluation methodology showed evidence of the effectiveness of biclustering in finding local patterns in fMRI time series data. Further work is needed regarding scalability to promote the application in real scenarios.


Asunto(s)
Perfilación de la Expresión Génica , Imagen por Resonancia Magnética , Algoritmos , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...