Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016675

RESUMEN

Microalgae are promising sources of essential lipids, including omega-3 and omega-6 polyunsaturated fatty acids (n-3 and n-6 PUFA) and novel lipid metabolites like oxylipins. However, limited data exist on the oxylipin profile, its characterization, and the potential impact of the extraction process on these metabolites in microalgae. Thus, our study aimed to investigate the fatty acid and oxylipin profile of four microalgal species of interest (Microchloropsis gaditana, Tisochrysis lutea, Phaeodactylum tricornutum, and Porphyridium cruentum) while also examining the impact of the extraction method, with a focus on developing a greener process using ultrasound-assisted extraction (UAE) and ethanol. The UAE method showed similar oxylipin profiles, generally yielding concentrations comparable to those of the conventional Folch method. In total, 68 oxylipins derived from n-3 and n-6 PUFA were detected, with the highest concentrations of n-3 oxylipins found in P. tricornutum and T. lutea and of n-6 oxylipins in P. cruentum. This study provides the most extensive oxylipin characterization of these microalgae species to date, offering insights into alternative extraction methods and opening new avenues for further investigation of the significance of oxylipins in microalgae.

2.
Food Res Int ; 187: 114354, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763639

RESUMEN

Carotenoids, versatile natural pigments with numerous health benefits, face environmental concerns associated with conventional petrochemical-based extraction methods and limitations of their synthetic equivalents. In this context, this study aims to introduce eco-friendly approaches using ultrasound-based strategies (probe and bath) for the extraction of carotenoids from microalgae, initially focusing on Microchloropsis gaditana and subsequently evaluating the versatility of the method by applying it to other microalgae species of interest (Tisochrysis lutea, Porphyridium cruentum, and Phaeodactylum tricornutum) and defatted microalgal residues. Among the approaches evaluated, the 5-min ultrasonic probe system with ethanol showed comparable carotenoid recovery efficiency to the reference method (agitation, 24 h, acetone) (9.4 ± 2.5 and 9.6 ± 3.2 mg g-1 carotenoids per dry biomass, for the green and the reference method, respectively). Moreover, the method's sustainability was demonstrated using the AGREEprep™ software (scored 0.62 out of 1), compared to the traditional method (0.22 out of 1). The developed method yielded high carotenoid contents across species with diverse cell wall compositions (3.1 ± 0.2, 2.1 ± 0.3, and 4.1 ± 0.1 mg g-1 carotenoid per dry biomass for T. lutea, P. cruentum, and P. tricornutum, respectively). Moreover, the application of the method to defatted biomass showed potential for microalgal valorization with carotenoid recovery rates of 41 %, 60 %, 61 %, and 100 % for M.gaditana, P. tricornutum, T. lutea, and P. cruentum, compared to the original biomass, respectively. Furthermore, by using high-performance liquid chromatography with a diode array detector (HPLC-DAD) and high-resolution mass spectrometry (HRMS), we reported the carotenoid and chlorophyll profiles of the different microalgae and evaluated the impact of the eco-friendly methods. The carotenoid and chlorophyll profiles varied depending on the species, biomass, and method used. In summary, this study advances a green extraction method with improved environmental sustainability and shorter extraction time, underscoring the potential of this approach as a valuable alternative for the extraction of microalgal pigments.


Asunto(s)
Carotenoides , Microalgas , Carotenoides/análisis , Carotenoides/aislamiento & purificación , Microalgas/química , Espectrometría de Masas , Ultrasonido/métodos , Biomasa , Tecnología Química Verde
3.
Molecules ; 27(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744834

RESUMEN

Microalgae are alternatives and sustainable sources of omega-3 long chain-polyunsaturated fatty acids (LC-PUFA). However, the eco-friendly extraction of these bioactives remains unexplored. In this work, the use of enzyme-based methods in combination with ultrasounds was evaluated as green approaches to extract the omega-3 lipids from Nannochloropsis gaditana. Three commercial enzymatic solutions (Viscozyme® L, Celluclast® 1.5 L, and Saczyme®) were investigated, and results were compared with the traditional Folch method. A promising extraction approach was developed by using Saczyme®, achieving a lipid yield of 25.7% ± 0.5, comparable to the traditional method (27.3% ± 0.7) (p > 0.05). Similar omega-3 content was found by GC−MS analysis for both lipid extracts (30.2% ± 2.4 and 29.3% ± 0.8 for the green and the traditional method, respectively), showing that the green approaches did not affect the fatty acid profile. Moreover, the cytotoxic activity of produced lipids was assessed by comparing human colon cancer cells (HCT-116) and epithelial nontumorigenic immortalized cells (HCEC-1CT). Results suggest that the lipid extracts have a selective effect, reducing the viability of the colon carcinoma cells but not the nontumorigenic cells. Thus, this study provides new eco-innovative approaches for extracting the omega-3 LC-PUFA from microalgae with promising biological properties.


Asunto(s)
Ácidos Grasos Omega-3 , Microalgas , Estramenopilos , Ácidos Grasos , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/farmacología , Humanos
4.
Polymers (Basel) ; 14(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35406293

RESUMEN

Nowadays, biopolymers are playing a fundamental role in our society because of the environmental issues and concerns associated with synthetic polymers. The aim of this Special Issue entitled 'Women in Polymer Science and Technology: Biopolymers' is highlighting the work designed and developed by women on biopolymer science and technology. In this context, this short review aims to provide an introduction to this Special Issue by highlighting some recent contributions of women around the world on the particular topic of biopolymer science and technology during the last 20 years. In the first place, it highlights a selection of important works performed on a number of well-studied natural polymers, namely, agar, chitin, chitosan, cellulose, and collagen. Secondly, it gives an insight into the discovery of new polysaccharides and enzymes that have a role in their synthesis and in their degradation. These contributions will be paving the way for the next generation of female and male scientists on this topic.

5.
Mar Drugs ; 19(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34940661

RESUMEN

A growing concern for overall health is driving a global market of natural ingredients not only in the food industry but also in the cosmetic field. In this study, a screening on potential cosmetic applications of aqueous extracts from three Icelandic seaweeds produced by pulsed electric fields (PEF) was performed. Produced extracts by PEF from Ulva lactuca, Alaria esculenta and Palmaria palmata were compared with the traditional hot water extraction in terms of polyphenol, flavonoid and carbohydrate content. Moreover, antioxidant properties and enzymatic inhibitory activities were evaluated by using in vitro assays. PEF exhibited similar results to the traditional method, showing several advantages such as its non-thermal nature and shorter extraction time. Amongst the three Icelandic species, Alaria esculenta showed the highest content of phenolic (mean value 8869.7 µg GAE/g dw) and flavonoid (mean value 12,098.7 µg QE/g dw) compounds, also exhibiting the highest antioxidant capacities. Moreover, Alaria esculenta extracts exhibited excellent anti-enzymatic activities (76.9, 72.8, 93.0 and 100% for collagenase, elastase, tyrosinase and hyaluronidase, respectively) for their use in skin whitening and anti-aging products. Thus, our preliminary study suggests that Icelandic Alaria esculenta-based extracts produced by PEF could be used as potential ingredients for natural cosmetic and cosmeceutical formulations.


Asunto(s)
Antioxidantes/farmacología , Productos Biológicos/química , Cosmecéuticos/química , Extractos Vegetales/farmacología , Algas Marinas , Antioxidantes/química , Organismos Acuáticos , Humanos , Islandia , Extractos Vegetales/química
6.
Mar Drugs ; 19(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34677473

RESUMEN

Until now, the red algae Gelidium sesquipedale has been primarily exploited for agar production, leaving an undervalued biomass. In this work, the use of eco-friendly approaches employing ultrasound-assisted extraction (UAE) and green solvents was investigated to valorize the algal minor compounds. The green methods used herein showed an attractive alternative to efficiently extract a broad spectrum of bioactive compounds in short extraction times (15 to 30 min vs. 8 h of the conventional method). Using the best UAE conditions, red seaweed extracts were characterized in terms of total phenolics (189.3 ± 11.7 mg GAE/100 g dw), flavonoids (310.7 ± 9.7 mg QE/100 g dw), mycosporine-like amino acids (MAAs) (Σ MAAs = 1271 mg/100 g dw), and phycobiliproteins (72.4 ± 0.5 mg/100 g dw). Additionally, produced algal extracts exhibited interesting antioxidant and anti-enzymatic activities for potential applications in medical and/or cosmetic products. Thus, this study provides the basis to reach a superior valorization of algal biomass by using alternative methods to extract biologically active compounds following eco-friendly approaches. Moreover, the strategies developed not only open new possibilities for the commercial use of Gelidium sesquipedale, but also for the valorization of different algae species since the techniques established can be easily adapted.


Asunto(s)
Agar/química , Productos Biológicos/química , Rhodophyta , Animales , Organismos Acuáticos , Tecnología Química Verde
7.
Molecules ; 25(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708275

RESUMEN

Microalgal biomass is a sustainable and valuable source of lipids with omega-3 fatty acids. The efficient extraction of lipids from microalgae requires fast and alternative extraction methods, frequently combined with biomass pre-treatment by different procedures. In this work, Pressurized liquid extraction (PLE) was optimized and compared with traditional lipid extraction methods, Folch and Bligh and Dyer, and with a new Ultrasound Assisted Extraction (UAE) method for lipids from microalgae Isochrysis galbana. To further optimize PLE and UAE, enzymatic pre-treatment of microalga Isochrysis galbana was studied with commercial enzymes Viscozyme and Celluclast. No significant differences were found for lipid yields among different extraction techniques used. However, advanced extraction techniques with or without pre-treatment are a green, fast, and toxic solvent free alternative to traditional techniques. Lipid composition of Isochrysis was determined by HPLC-ELSD and included neutral and polar lipids, showing that each fraction comprised different contents in omega-3 polyunsaturated fatty acids (PUFA). The highest polar lipids content was achieved with UAE (50 °C and 15 min) and PLE (100 °C) techniques. Moreover, the highest omega-3 PUFA (33.2%), eicosapentaenoic acid (EPA) (3.3%) and docosahexaenoic acid (DHA) (12.0%) contents were achieved with the advanced technique UAE, showing the optimized method as a practical alternative to produce valuable lipids for food and nutraceutical applications.


Asunto(s)
Ácidos Docosahexaenoicos/química , Enzimas/metabolismo , Haptophyta/química , Lípidos/aislamiento & purificación , Suplementos Dietéticos , Ácido Eicosapentaenoico/química , Ácidos Grasos Omega-3/química , Extracción Líquido-Líquido , Microalgas/química , Presión , Solventes/química , Ondas Ultrasónicas
8.
N Biotechnol ; 57: 45-54, 2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32224214

RESUMEN

Lipases are a versatile class of enzymes that have aroused great interest in the food and pharmaceutical industries due to their ability to modify and synthesize new lipids for functional foods. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have shown important biological functions promoting human health, especially in the development and maintenance of brain function and vision. Lipases allow selective production of functional lipids enriched in omega-3 PUFAs and are unique enzymatic tools to improve the natural composition of lipids and provide specific bioactivities. This review comprises recent research trends on the enzymatic production of bioactive, structured lipids with improved nutritional characteristics, using new enzymatic processing technologies in combination with novel raw materials, including microalgal lipids and new seed oils high in omega-3 fatty acids. An extensive number of lipase applications in the synthesis of health-promoting lipids enriched in omega-3 fatty acids by enzymatic modification is reviewed, considering the main advances in recent years for production of ethyl esters, 2-monoacylglycerols and structured triglycerides and phospholipids with omega-3 fatty acids, in order to achieve bioactive lipids as new foods and drugs.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Aceites de Pescado/metabolismo , Lipasa/metabolismo , Lípidos/biosíntesis , Ácidos Grasos Omega-3/química , Aceites de Pescado/química , Estado de Salud , Humanos
9.
Food Chem ; 271: 433-439, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30236698

RESUMEN

Enzymatic synthesis of fatty acid ethyl esters (FAEE) from chia (Salvia hispanica L.) oil has been performed with different modified derivatives and compared with commercial immobilized lipases to produce omega-3 rich FAEE. Therefore, the main objective was to synthesize omega-3 esters from chia oil catalysed by polyethylene glycol-modified lipases using a biocatalyst with higher stability than commercial derivatives. Lipase from Thermomyces lanuginosus (TLL) was immobilized by hydrophobic adsorption on Sepabeads C-18 followed by a physicochemical coating of lipase surface with a dense layer of PEG. Ethanolysis reactions were carried out using pressurized liquid extracted chia seed oil and with different lipase derivatives to compare the omega-3 FAEE yield and ratio of reaction products, which were analysed by HPLC-ELSD. Furthermore, reutilization of lipase derivatives was studied to evaluate the stability after several reaction cycles to minimize decreasing of catalytic activity and develop a feasible enzymatic process for food industrial applications.


Asunto(s)
Ácidos Grasos Omega-3/síntesis química , Lipasa/metabolismo , Salvia/química , Enzimas Inmovilizadas , Ésteres , Polietilenglicoles
10.
J Biotechnol ; 289: 126-134, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30465792

RESUMEN

Different immobilized biocatalysts of Thermomyces lanuginosus lipase (TLL) exhibited different properties for the ethanolysis of high oleic sunflower oil in solvent-free systems. TLL immobilized by interfacial adsorption on octadecyl (C-18) supports lost its 1,3-regioselectivity and produced more than 99% of ethyl esters. This reaction was influenced by mass-transfer limitations. TLL adsorbed on macroporous C-18 supports (616 Å of pore diameter) was 10-fold more active than TLL adsorbed on mesoporous supports (100-200 Å of pore diameter) in solvent-free systems. Both derivatives exhibited similar activity when working in hexane in the absence of diffusional limitations. In addition, TLL adsorbed on macroporous Purolite C-18 was 5-fold more stable than TLL adsorbed on mesoporous Sepabeads C-18. The stability of the best biocatalyst was 20-fold lower in anhydrous oil than in anhydrous hexane. Mild PEGylation of immobilized TLL greatly increased its stability in anhydrous hexane at 40 °C, fully preserving the activity after 20 days. In anhydrous oil at 40 °C, PEGylated TLL-Purolite C-18 retained 65% of its initial activity after six days compared to 10% of the activity retained by the unmodified biocatalyst. Macroporous and highly hydrophobic supports (e.g., Purolite C-18) seem to be very useful to prepare optimal immobilized biocatalysts for ethanolysis of oils by TLL in solvent-free systems.


Asunto(s)
Ascomicetos/enzimología , Enzimas Inmovilizadas/química , Etanol/química , Lipasa/química , Aceite de Girasol/química , Adsorción , Biocatálisis , Hexanos/química , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles/química
11.
Food Chem ; 244: 75-82, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29120808

RESUMEN

The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil.


Asunto(s)
Echium/embriología , Aceites de Plantas/aislamiento & purificación , Semillas/química , Solventes , Etanol , Ácidos Grasos Omega-3/análisis , Hexanos , Microondas , Presión , Ultrasonido
12.
J Agric Food Chem ; 65(12): 2572-2579, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28267913

RESUMEN

Chia (Salvia hispanica L.) seeds contain an important amount of edible oil rich in omega-3 fatty acids. Fast and alternative extraction techniques based on polar solvents, such as ethanol or water, have become relevant for oil extraction in recent years. However, chia seeds also contain a large amount of soluble fiber or mucilage, which makes difficult an oil extraction process with polar solvents. For that reason, the aim of this study was to develop a gentle extraction method for mucilage in order to extract chia oil with polar solvents using pressurized liquids and compare with organic solvent extraction. The proposed mucilage extraction method, using an ultrasonic probe and only water, was optimized at mild conditions (50 °C and sonication 3 min) to guarantee the omega-3 oil quality. Chia oil extraction was performed using pressurized liquid extraction (PLE) with different solvents and their mixtures at five different extraction temperatures (60, 90, 120, 150, and 200 °C). Optimal PLE conditions were achieved with ethyl acetate or hexane at 90 °C in only 10 min of static extraction time (chia oil yield up to 30.93%). In addition, chia oils extracted with nonpolar and polar solvents by PLE were analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate fatty acid composition at different extraction conditions. Chia oil contained ∼65% of α-linolenic acid regardless of mucilage extraction method, solvent, or temperature used. Furthermore, tocopherols and tocotrienols were also analyzed by HPLC in the extracted chia oils. The mucilage removal allowed the subsequent extraction of the chia oil with polar or nonpolar solvents by PLE producing chia oil with the same fatty acid and tocopherol composition as traditional extraction.


Asunto(s)
Fraccionamiento Químico/métodos , Ácidos Grasos Omega-3/química , Mucílago de Planta/aislamiento & purificación , Aceites de Plantas/química , Salvia/química , Semillas/química , Ultrasonido/métodos , Fraccionamiento Químico/instrumentación , Ácidos Grasos Omega-3/aislamiento & purificación , Mucílago de Planta/análisis , Aceites de Plantas/aislamiento & purificación , Ultrasonido/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA