Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Neuro Oncol ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717379

RESUMEN

BACKGROUND: The term Gliomatosis cerebri (GC), a radiology-defined highly infiltrating diffuse glioma, has been abandoned since molecular GC-associated features have not been established yet. METHODS: We conducted a multinational retrospective study of 104 children and adolescents with GC providing comprehensive clinical and (epi-)genetic characterization. RESULTS: Median overall survival (OS) was 15.5 months (interquartile range, 10.9-27.7) with a 2-years survival rate of 28%. Histopathological grading correlated significantly with median OS: CNS WHO grade II: 47.8 months (25.2-55.7); grade III: 15.9 months (11.4-26.3); grade IV: 10.4 months (8.8-14.4). By DNA methylation profiling (n=49), most tumors were classified as pediatric-type diffuse high-grade glioma (pedHGG), H3-/IDH-wildtype (n=31/49, 63.3%) with enriched subclasses pedHGG_RTK2 (n=19), pedHGG_A/B (n=6), and pedHGG_MYCN (n=5), but only one pedHGG_RTK1 case. Within the pedHGG, H3-/IDH-wildtype subgroup, recurrent alterations in EGFR (n=10) and BCOR (n=9) were identified. Additionally, we observed structural aberrations in chromosome 6 in 16/49 tumors (32.7%) across tumor types. In the pedHGG, H3-/IDH-wildtype subgroup TP53 alterations had a significant negative effect on OS. CONCLUSION: Contrary to previous studies, our representative pediatric GC study provides evidence that GC has a strong predilection to arise on the background of specific molecular features (especially pedHGG_RTK2, pedHGG_A/B, EGFR and BCOR mutations, chromosome 6 rearrangements).

3.
J Neuropathol Exp Neurol ; 83(2): 115-124, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38237135

RESUMEN

Pilocytic astrocytomas (PA) typically exhibit distinct clinical, radiological, histopathological, and genetic features. DNA-methylation profiling distinguishes PA according to their location (infratentorial, midline, hemispheric, or spinal). In the hemispheric location, distinguishing PA from glioneuronal tumors remains a common diagnostic challenge for neuropathologists. Furthermore, the current version of the DKFZ classifier seems to have difficulty separating them from gangliogliomas. In this study, after central radiological review, we identified a histopathologically defined set of PA (histPA, n = 11) and a cohort of DNA-methylation defined PA (mcPA, n = 11). Nine out of the 11 histPA matched the methylation class of hemispheric PA, whereas 2 cases were classified at the end of the study as dysembryoplastic neuroepithelial tumors. Similarly, the mcPA cohort contained tumors mainly classified as PA (7/11), but 4 cases were classified as glioneuronal. The analysis of the 16 tumors with an integrated diagnosis of PA revealed that they affect mainly children with a wide spectrum of radiological, histopathological (i.e. a predominantly diffuse growth pattern), and genetic characteristics (large range of mitogen-activated protein kinase alterations). Based on these results, we consider hemispheric PA to be different from their counterparts in other locations and to overlap with other glioneuronal tumors, reinforcing the necessity of interpreting all data to obtain an accurate diagnosis.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Astrocitoma , Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Neoplasias Neuroepiteliales , Niño , Humanos , Astrocitoma/patología , Glioma/genética , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , ADN
4.
Neuro Oncol ; 26(3): 553-568, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-37702430

RESUMEN

BACKGROUND: Diffuse midline gliomas (DMG) are pediatric tumors with negligible 2-year survival after diagnosis characterized by their ability to infiltrate the central nervous system. In the hope of controlling the local growth and slowing the disease, all patients receive radiotherapy. However, distant progression occurs frequently in DMG patients. Current clues as to what causes tumor infiltration circle mainly around the tumor microenvironment, but there are currently no known determinants to predict the degree of invasiveness. METHODS: In this study, we use patient-derived glioma stem cells (GSCs) to create patient-specific 3D avatars to model interindividual invasion and elucidate the cellular supporting mechanisms. RESULTS: We show that GSC models in 3D mirror the invasive behavior of the parental tumors, thus proving the ability of DMG to infiltrate as an autonomous characteristic of tumor cells. Furthermore, we distinguished 2 modes of migration, mesenchymal and ameboid-like, and associated the ameboid-like modality with GSCs derived from the most invasive tumors. Using transcriptomics of both organoids and primary tumors, we further characterized the invasive ameboid-like tumors as oligodendrocyte progenitor-like, with highly contractile cytoskeleton and reduced adhesion ability driven by crucial over-expression of bone morphogenetic pathway 7 (BMP7). Finally, we deciphered MEK, ERK, and Rho/ROCK kinases activated downstream of the BMP7 stimulation as actionable targets controlling tumor cell motility. CONCLUSIONS: Our findings identify 2 new therapeutic avenues. First, patient-derived GSCs represent a predictive tool for patient stratification in order to adapt irradiation strategies. Second, autocrine and short-range BMP7-related signaling becomes a druggable target to prevent DMG spread and metastasis.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Neoplasias Encefálicas/patología , Glioma/patología , Transducción de Señal , Microambiente Tumoral
6.
J Pain ; 25(1): 73-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37524220

RESUMEN

Myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) is a murine model for multiple sclerosis. This model is characterized by chronic and progressive demyelination, leading to impairment of motor function and paralysis. While the outcomes of the disease, including impaired motor function and immunological changes, are well-characterized, little is known about the impact of EAE on the electrophysiology of the motor and sensory systems. In this study, we assessed evoked potentials as a quantitative marker for in vivo monitoring of nervous system damage. Motor-evoked potentials (MEPs) and sensory-evoked potentials (SEPs) were first standardized in naïve C57BL mice and studied thoroughly in EAE mice. The duration of MEPs and the number of connotative potentials increased significantly alongside an increase in temporal SEP amplitudes. Moreover, a new SEP wave was identified in naïve animals, which significantly increased in MOG-induced EAE animals with no or mild symptoms (clinical score 0-2, 0-5 scale). This wave occurred ∼25 milliseconds poststimulation, thus named p25. P25 was correlated with increased vocalization and was also reduced in amplitude following treatment with morphine. As the EAE score progressed (clinical score 3-4, 0-5 scale), the amplitude of MEPs and SEPs decreased drastically. Our results demonstrate that desynchronized neural motor activity, along with hypersensitivity in the early stages of EAE, leads to a complete loss of motor and sensory functions in the late stages of the disease. The findings also suggest an increase in p25 amplitude before motor deficits appear, indicating SEP as a predictive marker for disease progression. PERSPECTIVE: This article assesses p25, a new sensory electrophysiology wave that correlates with pain-related behavior in MOG-induced EAE mice and appears prior to the clinical symptoms. Motor electrophysiology correlates with traditional motor behavior scoring and histology.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/patología , Glicoproteína Mielina-Oligodendrócito/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
7.
Acta Neuropathol ; 147(1): 2, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066305

RESUMEN

Diffuse midline gliomas (DMG) H3 K27-altered are incurable grade 4 gliomas and represent a major challenge in neuro-oncology. This tumour type is now classified in four subtypes by the 2021 edition of the WHO Classification of the Central Nervous System (CNS) tumours. However, the H3.3-K27M subgroup still appears clinically and molecularly heterogeneous. Recent publications reported that rare patients presenting a co-occurrence of H3.3K27M with BRAF or FGFR1 alterations tended to have a better prognosis. To better study the role of these co-driver alterations, we assembled a large paediatric and adult cohort of 29 tumours H3K27-altered with co-occurring activating mutation in BRAF or FGFR1 as well as 31 previous cases from the literature. We performed a comprehensive histological, radiological, genomic, transcriptomic and DNA methylation analysis. Interestingly, unsupervised t-distributed Stochastic Neighbour Embedding (tSNE) analysis of DNA methylation profiles regrouped BRAFV600E and all but one FGFR1MUT DMG in a unique methylation cluster, distinct from the other DMG subgroups and also from ganglioglioma (GG) or high-grade astrocytoma with piloid features (HGAP). This new DMG subtype harbours atypical radiological and histopathological profiles with calcification and/or a solid tumour component both for BRAFV600E and FGFR1MUT cases. The analyses of a H3.3-K27M BRAFV600E tumour at diagnosis and corresponding in vitro cellular model showed that mutation in H3-3A was the first event in the oncogenesis. Contrary to other DMG, these tumours occur more frequently in the thalamus (70% for BRAFV600E and 58% for FGFR1MUT) and patients have a longer overall survival with a median above three years. In conclusion, DMG, H3 K27 and BRAF/FGFR1 co-altered represent a new subtype of DMG with distinct genotype/phenotype characteristics, which deserve further attention with respect to trial interpretation and patient management.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Adulto , Humanos , Niño , Histonas/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Proto-Oncogénicas B-raf/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Astrocitoma/genética , Mutación/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
8.
Nature ; 623(7986): 397-405, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914940

RESUMEN

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Asunto(s)
Encéfalo , Colesterol , Células Madre Pluripotentes Inducidas , Microglía , Células-Madre Neurales , Neurogénesis , Organoides , Animales , Humanos , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Microglía/citología , Microglía/metabolismo , Organoides/citología , Organoides/metabolismo , Colesterol/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Axones , Proliferación Celular , Ésteres/metabolismo , Gotas Lipídicas/metabolismo
9.
Front Oncol ; 13: 1229312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886173

RESUMEN

We previously identified VRK3 as a specific vulnerability in DMG-H3K27M cells in a synthetic lethality screen targeting the whole kinome. The aim of the present study was to elucidate the mechanisms by which VRK3 depletion impact DMG-H3K27M cell fitness. Gene expression studies after VRK3 knockdown emphasized the inhibition of genes involved in G1/S transition of the cell cycle resulting in growth arrest in G1. Additionally, a massive modulation of genes involved in chromosome segregation was observed, concomitantly with a reduction in the level of phosphorylation of serine 10 and serine 28 of histone H3 supporting the regulation of chromatin condensation during cell division. This last effect could be partly due to a concomitant decrease of the chromatin kinase VRK1 in DMG following VRK3 knockdown. Furthermore, a metabolic switch specific to VRK3 function was observed towards increased oxidative phosphorylation without change in mitochondria content, that we hypothesized would represent a cell rescue mechanism. This study further explored the vulnerability of DMG-H3K27M cells to VRK3 depletion suggesting potential therapeutic combinations, e.g. with the mitochondrial ClpP protease activator ONC201.

10.
JCI Insight ; 8(14)2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37261910

RESUMEN

Ulcerative colitis (UC), Crohn's disease (CD), and celiac disease are prevalent intestinal inflammatory disorders with nonsatisfactory therapeutic interventions. Analyzing patient data-driven cohorts can highlight disease pathways and new targets for interventions. Long noncoding RNAs (lncRNAs) are attractive candidates, since they are readily targetable by RNA therapeutics, show relative cell-specific expression, and play key cellular functions. Uniformly analyzing gut mucosal transcriptomics from 696 subjects, we have highlighted lncRNA expression along the gastrointestinal (GI) tract, demonstrating that, in control samples, lncRNAs have a more location-specific expression in comparison with protein-coding genes. We defined dysregulation of lncRNAs in treatment-naive UC, CD, and celiac diseases using independent test and validation cohorts. Using the Predicting Response to Standardized Pediatric Colitis Therapy (PROTECT) inception UC cohort, we defined and prioritized lncRNA linked with UC severity and prospective outcomes, and we highlighted lncRNAs linked with gut microbes previously implicated in mucosal homeostasis. HNF1A-AS1 lncRNA was reduced in all 3 conditions and was further reduced in more severe UC form. Similarly, the reduction of HNF1A-AS1 ortholog in mice gut epithelia showed higher sensitivity to dextran sodium sulfate-induced colitis, which was coupled with alteration in the gut microbial community. These analyses highlight prioritized dysregulated lncRNAs that can guide future preclinical studies for testing them as potential targets.


Asunto(s)
Enfermedad Celíaca , Colitis Ulcerosa , Enfermedad de Crohn , ARN Largo no Codificante , Animales , Ratones , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , ARN Largo no Codificante/genética , Enfermedad Celíaca/genética , Transcriptoma , Estudios Prospectivos
13.
Sci Rep ; 12(1): 21555, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513684

RESUMEN

Pain after surgery remains a significant healthcare challenge. Here, abobotulinumtoxinA (aboBoNT-A, DYSPORT) was assessed in a post-surgical pain model in pigs. Full-skin-muscle incision and retraction surgery on the lower back was followed by intradermal injections of either aboBoNT-A (100, 200, or 400 U/pig), vehicle (saline), or wound infiltration of extended-release bupivacaine. We assessed mechanical sensitivity, distress behaviors, latency to approach the investigator, and wound inflammation/healing for 5-6 days post-surgery. We followed with immunohistochemical analyses of total and cleaved synaptosomal-associated protein 25 kD (SNAP25), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor protein-1(Iba1), calcitonin gene-related peptide (CGRP) and substance P (SP) in the skin, dorsal root ganglia (DRG) and the spinal cord of 400 U aboBoNT-A- and saline-treated animals. At Day 1, partial reversal of mechanical allodynia in aboBoNT-A groups was followed by a full reversal from Day 3. Reduced distress and normalized approaching responses were observed with aboBoNT-A from 6 h post-surgery. Bupivacaine reversed mechanical allodynia for 24 h after surgery but did not affect distress or approaching responses. In aboBoNT-A-treated animals cleaved SNAP25 was absent in the skin and DRG, but present in the ipsilateral dorsal horn of the spinal cord. In aboBoNT-A- versus saline-treated animals there were significant reductions in GFAP and Iba1 in the spinal cord, but no changes in CGRP and SP. Analgesic efficacy of aboBoNT-A appears to be mediated by its activity on spinal neurons, microglia and astrocytes. Clinical investigation to support the use of aboBoNT-A as an analgesic drug for post-surgical pain, is warranted.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Hiperalgesia , Ratas , Porcinos , Animales , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Péptido Relacionado con Gen de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Analgésicos/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/metabolismo , Bupivacaína/farmacología
14.
Acta Neuropathol Commun ; 10(1): 137, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104744

RESUMEN

Posterior fossa group A ependymomas (EPN_PFA) are characterized by a loss of H3 K27 trimethylation due to either EZHIP overexpression or H3 p.K27M mutation, similar to H3 K27-altered diffuse midline gliomas (DMG), but in reverse proportions. Very little data is available in the literature concerning H3 K27M-mutant EPN_PFA. Here, we retrospectively studied a series of nine pediatric tumors initially diagnosed as H3 K27M-mutant EPN_PFA to compare them to EZHIP-overexpressing EPN_PFA in terms of radiology, follow-up, histopathology, and molecular biology (including DNA-methylation profiling). Seven tumors clustered within EPN_PFA by DNA-methylation analysis and t-distributed stochastic neighbor embedding. Among the two remaining cases, one was reclassified as a DMG and the last was unclassified. H3 K27M-mutant EPN_PFA cases were significantly older than their counterparts with an EZHIP overexpression. Radiological and histopathological central review of our seven H3 K27M-mutant EPN_PFA cases found them to be similar to their counterparts with an EZHIP overexpression. Sequencing analyses revealed HIST1H3B (n = 2), HIST1H3C (n = 2), H3F3A (n = 1), and HIST1H3D (n = 1) K27M mutations (no sequencing analysis available for the last case which was immunopositive for H3K27M). Consequently, HIST1H3C/D mutations are more frequently observed in EPN_PFA than in classic pontine DMG, H3K27-mutant. Overall survival and event-free survival of EZHIP-overexpressing and H3 K27M-mutant EPN_PFA were similar. After surgery and radiation therapy, 5/7 patients were alive at the end of the follow-up. In summary, the diagnosis of EPN_PFA must include tumor location, growth pattern, Olig2 expression, and DNA-methylation profiling before it can be differentiated from DMG, H3 K27-altered.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Glioma , Radiología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Niño , ADN , Ependimoma/diagnóstico por imagen , Ependimoma/genética , Ependimoma/patología , Glioma/genética , Histonas/genética , Humanos , Estudios Retrospectivos
16.
Neuropathol Appl Neurobiol ; 48(6): e12834, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35836307

RESUMEN

AIMS: Dysembryoplastic neuroepithelial tumour (DNT) is a glioneuronal tumour that is challenging to diagnose, with a wide spectrum of histological features. Three histopathological patterns have been described: specific DNTs (both the simple form and the complex form) comprising the specific glioneuronal element, and also the non-specific/diffuse form which lacks it, and has unclear phenotype-genotype correlations with numerous differential diagnoses. METHODS: We used targeted methods (immunohistochemistry, fluorescence in situ hybridisation and targeted sequencing) and large-scale genomic methodologies including DNA methylation profiling to perform an integrative analysis to better characterise a large retrospective cohort of 82 DNTs, enriched for tumours that showed progression on imaging. RESULTS: We confirmed that specific DNTs are characterised by a single driver event with a high frequency of FGFR1 variants. However, a subset of DNA methylation-confirmed DNTs harbour alternative genomic alterations to FGFR1 duplication/mutation. We also demonstrated that a subset of DNTs sharing the same FGFR1 alterations can show in situ progression. In contrast to the specific forms, "non-specific/diffuse DNTs" corresponded to a heterogeneous molecular group encompassing diverse, newly-described, molecularly distinct entities. CONCLUSIONS: Specific DNT is a homogeneous group of tumours sharing characteristics of paediatric low-grade gliomas: a quiet genome with a recurrent genomic alteration in the RAS-MAPK signalling pathway, a distinct DNA methylation profile and a good prognosis but showing progression in some cases. The "non-specific/diffuse DNTs" subgroup encompasses various recently described histomolecular entities, such as PLNTY and diffuse astrocytoma, MYB or MYBL1 altered.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Neuroepiteliales , Neoplasias Encefálicas/patología , Genómica , Humanos , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/patología , Estudios Retrospectivos
17.
Acta Neuropathol Commun ; 10(1): 81, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642047

RESUMEN

The International Society for the Study of Vascular Anomalies (ISSVA) has defined four vascular lesions in the central nervous system (CNS): arteriovenous malformations, cavernous angiomas (also known as cerebral cavernous malformations), venous malformations, and telangiectasias. From a retrospective central radiological and histopathological review of 202 CNS vascular lesions, we identified three cases of unclassified vascular lesions. Interestingly, they shared the same radiological and histopathological features evoking the cavernous subtype of angioleiomyomas described in the soft tissue. We grouped them together with four additional similar cases from our clinicopathological network and performed combined molecular analyses. In addition, cases were compared with a cohort of 5 soft tissue angioleiomyomas. Three out 6 CNS lesions presented the same p.Gly41Cys GJA4 mutation recently reported in hepatic hemangiomas and cutaneous venous malformations and found in 4/5 soft tissue angioleiomyomas of our cohort with available data. Most DNA methylation profiles were not classifiable using the CNS brain tumor (version 12.5), and sarcoma (version 12.2) classifiers. However, using unsupervised t-SNE analysis and hierarchical clustering analysis, 5 of the 6 lesions grouped together and formed a distinct epigenetic group, separated from the clusters of soft tissue angioleiomyomas, other vascular tumors, inflammatory myofibroblastic tumors and meningiomas. Our extensive literature review identified several cases similar to these lesions, with a wide variety of denominations. Based on radiological and histomolecular findings, we suggest the new terminology of "dural angioleiomyomas" (DALM) to designate these lesions characterized by a distinct DNA methylation pattern and frequent GJA4 mutations.


Asunto(s)
Angiomioma , Conexinas , Hemangioma , Angiomioma/genética , Conexinas/genética , Metilación de ADN , Hemangioma/genética , Humanos , Mutación , Estudios Retrospectivos , Proteína alfa-4 de Unión Comunicante
18.
Brain Pathol ; 32(3): e13039, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34854160

RESUMEN

Pediatric bithalamic gliomas encompass several histomolecular tumoral types from benign to malignant and underlines the central role of a comprehensive neuropathological review, including immunohistochemistry, genetic, and epigenetic analyses, to achieve an accurate diagnosis.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/patología , Niño , Epigénesis Genética , Epigenómica , Glioma/genética , Glioma/patología , Humanos
19.
Cancers (Basel) ; 13(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067180

RESUMEN

BACKGROUND: Pediatric high-grade gliomas (pHGGs) are the leading cause of mortality in pediatric neuro-oncology, displaying frequent resistance to standard therapies. Profiling DNA repair and cell cycle gene expression has recently been proposed as a strategy to classify adult glioblastomas. To improve our understanding of the DNA damage response pathways that operate in pHGGs and the vulnerabilities that these pathways might expose, we sought to identify and characterize a specific DNA repair and cell-cycle gene expression signature of pHGGs. METHODS: Transcriptomic analyses were performed to identify a DNA repair and cell-cycle gene expression signature able to discriminate pHGGs (n = 6) from low-grade gliomas (n = 10). This signature was compared to related signatures already established. We used the pHGG signature to explore already transcriptomic datasets of DIPGs and sus-tentorial pHGGs. Finally, we examined the expression of key proteins of the pHGG signature in 21 pHGG diagnostic samples and nine paired relapses. Functional inhibition of one DNA repair factor was carried out in four patients who derived H3.3 K27M mutant cell lines. RESULTS: We identified a 28-gene expression signature of DNA repair and cell cycle that clustered pHGGs cohorts, in particular sus-tentorial locations, in two groups. Differential protein expression levels of PARP1 and XRCC1 were associated to TP53 mutations and TOP2A amplification and linked significantly to the more radioresistant pHGGs displaying the worst outcome. Using patient-derived cell lines, we showed that the PARP-1/XRCC1 expression balance might be correlated with resistance to PARP1 inhibition. CONCLUSION: We provide evidence that PARP1 overexpression, associated to XRCC1 expression, TP53 mutations, and TOP2A amplification, is a new theranostic and potential therapeutic target.

20.
Eur Radiol ; 31(12): 8913-8924, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34003354

RESUMEN

OBJECTIVES: The diffuse intrinsic pontine gliomas (DIPGs) are now defined by the type of histone H3 mutated at lysine 27. We aimed to correlate the multimodal MRI features of DIPGs, H3K27M mutant, with their histological and molecular characteristics. METHODS: Twenty-seven treatment-naïve children with histopathologically confirmed DIPG H3K27M mutant were prospectively included. MRI performed prior to biopsy included multi-b-value diffusion-weighted imaging, ASL, and dynamic susceptibility contrast (DSC) perfusion imaging. The ADC and cerebral blood flow (CBF) and blood volume (CBV) were measured at the biopsy site. We assessed quantitative histological data, including microvascular density, nuclear density, and H3K27M-positive nuclear density. Gene expression profiling was also assessed in the samples. We compared imaging and histopathological data according to histone subgroup. We correlated MRI quantitative data with histological data and gene expression. RESULTS: H3.1K27M mutated tumors showed higher ADC values (median 3151 µm2/s vs 1741 µm2/s, p = 0.003), and lower perfusion values (DSC-rCBF median 0.71 vs 1.43, p = 0.002, and DSC-rCBV median 1.00 vs 1.71, p = 0.02) than H3.3K27M ones. They had similar microvascular and nuclear density, but lower H3K27M-positive nuclear density (p = 0.007). The DSC-rCBV was positively correlated to the H3K27M-positive nuclear density (rho = 0.74, p = 0.02). ADC values were not correlated with nuclear density nor perfusion values with microvascular density. The expression of gated channel activity-related genes tended to be inversely correlated with ADC values and positively correlated with DSC perfusion. CONCLUSIONS: H3.1K27M mutated tumors have higher ADC and lower perfusion values than H3.3K27M ones, without direct correlation with microvascular or nuclear density. This may be due to tissular edema possibly related to gated channel activity-related gene expression. KEY POINTS: • H3.1K27M mutant DIPG had higher apparent diffusion coefficient (p = 0.003), lower α (p = 0.048), and lower relative cerebral blood volume (p = 0.02) than H3.3K27M mutant DIPG at their biopsy sites. • Biopsy samples obtained within the tumor's enhancing portion showed higher microvascular density (p = 0.03) than samples obtained outside the tumor's enhancing portion, but similar H3K27M-positive nuclear density (p = 0.84). • Relative cerebral blood volume measured at the biopsy site was significantly correlated with H3K27M-positive nuclear density (rho = 0.74, p = 0.02).


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Neoplasias del Tronco Encefálico/diagnóstico por imagen , Neoplasias del Tronco Encefálico/genética , Niño , Glioma/diagnóstico por imagen , Glioma/genética , Histonas/genética , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...