Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Subcell Biochem ; 106: 365-385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38159234

RESUMEN

RNA is a central molecule in the life cycle of viruses, acting not only as messenger (m)RNA but also as a genome. Given these critical roles, it is not surprising that viral RNA is a hub for host-virus interactions. However, the interactome of viral RNAs remains largely unknown. This chapter discusses the importance of cellular RNA-binding proteins in virus infection and the emergent approaches developed to uncover and characterise them.


Asunto(s)
Interacciones Microbiota-Huesped , ARN Viral , ARN Viral/genética , ARN Viral/metabolismo , Interacciones Microbiota-Huesped/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Interacciones Huésped-Patógeno/genética , Replicación Viral
2.
Sci Rep ; 13(1): 11737, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474590

RESUMEN

Some strains of the inherited bacterium Wolbachia have been shown to be effective at reducing the transmission of dengue virus (DENV) and other RNA viruses by Aedes aegypti in both laboratory and field settings and are being deployed for DENV control. The degree of virus inhibition varies between Wolbachia strains. Density and tissue tropism can contribute to these differences but there are also indications that this is not the only factor involved: for example, strains wAu and wAlbA are maintained at similar intracellular densities but only wAu produces strong DENV inhibition. We previously reported perturbations in lipid transport dynamics, including sequestration of cholesterol in lipid droplets, with strains wMel/wMelPop in Ae. aegypti. To further investigate the cellular basis underlying these differences, proteomic analysis of midguts was carried out on Ae. aegypti lines carrying strains wAu and wAlbA: with the hypothesis that differences in perturbations may underline Wolbachia-mediated antiviral activity. Surprisingly, wAu-carrying midguts not only showed distinct proteome perturbations when compared to non-Wolbachia carrying and wAlbA-carrying midguts but also wMel-carrying midguts. There are changes in RNA processing pathways and upregulation of a specific set of RNA-binding proteins in the wAu-carrying line, including genes with known antiviral activity. Lipid transport and metabolism proteome changes also differ between strains, and we show that strain wAu does not produce the same cholesterol sequestration phenotype as wMel. Moreover, in contrast to wMel, wAu antiviral activity was not rescued by cyclodextrin treatment. Together these results suggest that wAu could show unique features in its inhibition of arboviruses compared to previously characterized Wolbachia strains.


Asunto(s)
Aedes , Virus del Dengue , Wolbachia , Animales , Virus del Dengue/fisiología , Proteoma , Wolbachia/fisiología , Antivirales , Proteómica , Lípidos
3.
Nucleic Acids Res ; 50(14): 8207-8225, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35848924

RESUMEN

RNA-binding proteins (RBPs) have been relatively overlooked in cancer research despite their contribution to virtually every cancer hallmark. Here, we use RNA interactome capture (RIC) to characterize the melanoma RBPome and uncover novel RBPs involved in melanoma progression. Comparison of RIC profiles of a non-tumoral versus a metastatic cell line revealed prevalent changes in RNA-binding capacities that were not associated with changes in RBP levels. Extensive functional validation of a selected group of 24 RBPs using five different in vitro assays unveiled unanticipated roles of RBPs in melanoma malignancy. As proof-of-principle we focused on PDIA6, an ER-lumen chaperone that displayed a novel RNA-binding activity. We show that PDIA6 is involved in metastatic progression, map its RNA-binding domain, and find that RNA binding is required for PDIA6 tumorigenic properties. These results exemplify how RIC technologies can be harnessed to uncover novel vulnerabilities of cancer cells.


Asunto(s)
Melanoma , Metástasis de la Neoplasia , Proteína Disulfuro Isomerasas , Proteínas de Unión al ARN , Línea Celular Tumoral , Retículo Endoplásmico , Humanos , Melanoma/genética , Melanoma/patología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Metástasis de la Neoplasia/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Elife ; 112022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35049501

RESUMEN

Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single-molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, subgenomic RNAs, and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the B.1.1.7 variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications.


Asunto(s)
COVID-19/virología , ARN Viral/metabolismo , SARS-CoV-2/patogenicidad , Animales , Chlorocebus aethiops/genética , ARN/metabolismo , ARN Viral/genética , SARS-CoV-2/genética , Células Vero , Proteínas Virales/metabolismo , Replicación Viral/fisiología
5.
Life Sci Alliance ; 5(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34848435

RESUMEN

The nuclear RNA exosome plays a key role in controlling the levels of multiple protein-coding and non-coding RNAs. Recruitment of the exosome to specific RNA substrates is mediated by RNA-binding co-factors. The transient interaction between co-factors and the exosome as well as the rapid decay of RNA substrates make identification of exosome co-factors challenging. Here, we use comparative poly(A)+ RNA interactome capture in fission yeast expressing three different mutants of the exosome to identify proteins that interact with poly(A)+ RNA in an exosome-dependent manner. Our analyses identify multiple RNA-binding proteins whose association with RNA is altered in exosome mutants, including the zinc-finger protein Mub1. Mub1 is required to maintain the levels of a subset of exosome RNA substrates including mRNAs encoding for stress-responsive proteins. Removal of the zinc-finger domain leads to loss of RNA suppression under non-stressed conditions, altered expression of heat shock genes in response to stress, and reduced growth at elevated temperature. These findings highlight the importance of exosome-dependent mRNA degradation in buffering gene expression networks to mediate cellular adaptation to stress.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , ARN Mensajero/genética , ARN Nuclear/genética , Proteínas de Unión al ARN/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Estrés Fisiológico , Regulación Fúngica de la Expresión Génica , Interacción Gen-Ambiente , ARN Mensajero/metabolismo , ARN Nuclear/metabolismo
6.
Trends Biochem Sci ; 47(1): 23-38, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509361

RESUMEN

RNA viruses interact with a wide range of cellular RNA-binding proteins (RBPs) during their life cycle. The prevalence of these host-virus interactions has been highlighted by new methods that elucidate the composition of viral ribonucleoproteins (vRNPs). Applied to 11 viruses so far, these approaches have revealed hundreds of cellular RBPs that interact with viral (v)RNA in infected cells. However, consistency across methods is limited, raising questions about methodological considerations when designing and interpreting these studies. Here, we discuss these caveats and, through comparing available vRNA interactomes, describe RBPs that are consistently identified as vRNP components and outline their potential roles in infection. In summary, these novel approaches have uncovered a new universe of host-virus interactions holding great therapeutic potential.


Asunto(s)
Proteoma , ARN Viral , Comunicación Celular , Interacciones Microbiota-Huesped , Interacciones Huésped-Patógeno , Proteoma/metabolismo , ARN Viral/genética , Ribonucleoproteínas/metabolismo
7.
PLoS Biol ; 19(9): e3001352, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34491982

RESUMEN

Antiviral defenses can sense viral RNAs and mediate their destruction. This presents a challenge for host cells since they must destroy viral RNAs while sparing the host mRNAs that encode antiviral effectors. Here, we show that highly upregulated interferon-stimulated genes (ISGs), which encode antiviral proteins, have distinctive nucleotide compositions. We propose that self-targeting by antiviral effectors has selected for ISG transcripts that occupy a less self-targeted sequence space. Following interferon (IFN) stimulation, the CpG-targeting antiviral effector zinc-finger antiviral protein (ZAP) reduces the mRNA abundance of multiple host transcripts, providing a mechanistic explanation for the repression of many (but not all) interferon-repressed genes (IRGs). Notably, IRGs tend to be relatively CpG rich. In contrast, highly upregulated ISGs tend to be strongly CpG suppressed. Thus, ZAP is an example of an effector that has not only selected compositional biases in viral genomes but also appears to have notably shaped the composition of host transcripts in the vertebrate interferome.


Asunto(s)
Fosfatos de Dinucleósidos , Factores Reguladores del Interferón/genética , ARN Viral , Proteínas de Unión al ARN/metabolismo , Células A549 , Línea Celular , Humanos , Interferón beta/farmacología , ARN Mensajero , Proteínas de Unión al ARN/genética , Fenómenos Fisiológicos de los Virus , Virus
8.
Science ; 374(6567): eabj3624, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34581622

RESUMEN

Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2'-5'-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , COVID-19/genética , COVID-19/fisiopatología , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/fisiología , Regiones no Traducidas 5' , Células A549 , Animales , COVID-19/enzimología , COVID-19/inmunología , Quirópteros/genética , Quirópteros/virología , Coronaviridae/enzimología , Coronaviridae/genética , Coronaviridae/fisiología , Endorribonucleasas/metabolismo , Humanos , Interferones/inmunología , Isoenzimas/genética , Isoenzimas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Polimorfismo de Nucleótido Simple , Prenilación de Proteína , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Viral/química , ARN Viral/genética , Retroelementos , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Replicación Viral
9.
Mol Cell ; 81(13): 2851-2867.e7, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34118193

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.


Asunto(s)
COVID-19/metabolismo , Proteoma/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/fisiología , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Células A549 , COVID-19/genética , Humanos , Proteoma/genética , ARN Viral/genética , Proteínas de Unión al ARN/genética , Proteínas Virales/genética
10.
Cell Rep ; 35(3): 109020, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33852916

RESUMEN

COVID-19, caused by the novel coronavirus SARS-CoV-2, is a global health issue with more than 2 million fatalities to date. Viral replication is shaped by the cellular microenvironment, and one important factor to consider is oxygen tension, in which hypoxia inducible factor (HIF) regulates transcriptional responses to hypoxia. SARS-CoV-2 primarily infects cells of the respiratory tract, entering via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). We demonstrate that hypoxia and the HIF prolyl hydroxylase inhibitor Roxadustat reduce ACE2 expression and inhibit SARS-CoV-2 entry and replication in lung epithelial cells via an HIF-1α-dependent pathway. Hypoxia and Roxadustat inhibit SARS-CoV-2 RNA replication, showing that post-entry steps in the viral life cycle are oxygen sensitive. This study highlights the importance of HIF signaling in regulating multiple aspects of SARS-CoV-2 infection and raises the potential use of HIF prolyl hydroxylase inhibitors in the prevention or treatment of COVID-19.


Asunto(s)
COVID-19/metabolismo , Células Epiteliales/metabolismo , Glicina/análogos & derivados , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoquinolinas/farmacología , Pulmón/metabolismo , SARS-CoV-2/fisiología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células A549 , Animales , COVID-19/patología , Células CACO-2 , Hipoxia de la Célula/efectos de los fármacos , Chlorocebus aethiops , Células Epiteliales/virología , Glicina/farmacología , Humanos , Pulmón/virología , Ratones , Células Vero , Tratamiento Farmacológico de COVID-19
11.
Semin Cell Dev Biol ; 111: 108-118, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32921578

RESUMEN

RNA is a central molecule in RNA virus biology due to its dual function as messenger and genome. However, the small number of proteins encoded by viral genomes is insufficient to enable virus infection. Hence, viruses hijack cellular RNA-binding proteins (RBPs) to aid replication and spread. In this review we discuss the 'knowns' and 'unknowns' regarding the contribution of host RBPs to the formation of viral particles and the initial steps of infection in the newly infected cell. Through comparison of the virion proteomes of ten different human RNA viruses, we confirm that a pool of cellular RBPs are typically incorporated into viral particles. We describe here illustrative examples supporting the important functions of these RBPs in viral particle formation and infectivity and we propose that the role of host RBPs in these steps can be broader than previously anticipated. Understanding how cellular RBPs regulate virus infection can lead to the discovery of novel therapeutic targets against viruses.


Asunto(s)
ARN Mensajero/genética , ARN Viral/genética , Proteínas de Unión al ARN/genética , Proteínas Virales/genética , Virión/genética , Virosis/genética , Virus/genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Virión/crecimiento & desarrollo , Virión/metabolismo , Ensamble de Virus , Virosis/metabolismo , Virosis/patología , Virosis/virología , Replicación Viral , Virus/clasificación , Virus/crecimiento & desarrollo , Virus/patogenicidad
12.
Nat Protoc ; 16(1): 27-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208978

RESUMEN

Interactions between RNA-binding proteins (RBPs) and RNAs are critical to cell biology. However, methods to comprehensively and quantitatively assess these interactions within cells were lacking. RNA interactome capture (RIC) uses in vivo UV crosslinking, oligo(dT) capture, and proteomics to identify RNA-binding proteomes. Recent advances have empowered RIC to quantify RBP responses to biological cues such as metabolic imbalance or virus infection. Enhanced RIC exploits the stronger binding of locked nucleic acid (LNA)-containing oligo(dT) probes to poly(A) tails to maximize RNA capture selectivity and efficiency, profoundly improving signal-to-noise ratios. The subsequent analytical use of SILAC and TMT proteomic approaches, together with high-sensitivity sample preparation and tailored statistical data analysis, substantially improves RIC's quantitative accuracy and reproducibility. This optimized approach is an extension of the original RIC protocol. It takes 3 d plus 2 weeks for proteomics and data analysis and will enable the study of RBP dynamics under different physiological and pathological conditions.


Asunto(s)
Proteómica/métodos , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Humanos , Células Jurkat , Oligonucleótidos/metabolismo , Unión Proteica , Flujo de Trabajo
13.
Open Biol ; 10(12): 200320, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33352061

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) proteome is expressed from alternatively spliced and unspliced genomic RNAs. However, HIV-1 RNAs that are not fully spliced are perceived by the host machinery as defective and are retained in the nucleus. During late infection, HIV-1 bypasses this regulatory mechanism by expression of the Rev protein from a fully spliced mRNA. Once imported into the nucleus, Rev mediates the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the production of the viral progeny. While regarded as a canonical RNA export factor, Rev has also been linked to HIV-1 RNA translation, stabilization, splicing and packaging. However, Rev's functions beyond RNA export have remained poorly understood. Here, we revisit this paradigmatic protein, reviewing recent data investigating its structure and function. We conclude by asking: what remains unknown about this enigmatic viral protein?


Asunto(s)
Infecciones por VIH/virología , VIH/fisiología , Animales , Descubrimiento de Drogas , Regulación Viral de la Expresión Génica , Productos del Gen rev/química , Productos del Gen rev/genética , Productos del Gen rev/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Interacciones Huésped-Patógeno , Humanos , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
14.
Genome Res ; 30(7): 1012-1026, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32554781

RESUMEN

Large RNA-binding complexes play a central role in gene expression and orchestrate production, function, and turnover of mRNAs. The accuracy and dynamics of RNA-protein interactions within these molecular machines are essential for their function and are mediated by RNA-binding proteins (RBPs). Here, we show that fission yeast whole-cell poly(A)+ RNA-protein crosslinking data provide information on the organization of RNA-protein complexes. To evaluate the relative enrichment of cellular RBPs on poly(A)+ RNA, we combine poly(A)+ RNA interactome capture with a whole-cell extract normalization procedure. This approach yields estimates of in vivo RNA-binding activities that identify subunits within multiprotein complexes that directly contact RNA. As validation, we trace RNA interactions of different functional modules of the 3' end processing machinery and reveal additional contacts. Extending our analysis to different mutants of the RNA exosome complex, we explore how substrate channeling through the complex is affected by mutation. Our data highlight the central role of the RNA helicase Mtl1 in regulation of the complex and provide insights into how different components contribute to engagement of the complex with substrate RNA. In addition, we characterize RNA-binding activities of novel RBPs that have been recurrently detected in the RNA interactomes of multiple species. We find that many of these, including cyclophilins and thioredoxins, are substoichiometric RNA interactors in vivo. Because RBPomes show very good overall agreement between species, we propose that the RNA-binding characteristics we observe in fission yeast are likely to apply to related proteins in higher eukaryotes as well.


Asunto(s)
ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Ciclofilinas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Mutación , Subunidades de Proteína/metabolismo , Motivos de Unión al ARN , Proteínas de Unión al ARN/química , Ribosomas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Transcripción Genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
15.
Biomolecules ; 10(4)2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344669

RESUMEN

RNA-binding proteins (RBPs) play a crucial role in regulating RNA function and fate. However, the full complement of RBPs has only recently begun to be uncovered through proteome-wide approaches such as RNA interactome capture (RIC). RIC has been applied to various cell lines and organisms, including plants, greatly expanding the repertoire of RBPs. However, several technical challenges have limited the efficacy of RIC when applied to plant tissues. Here, we report an improved version of RIC that overcomes the difficulties imposed by leaf tissue. Using this improved RIC method in Arabidopsis leaves, we identified 717 RBPs, generating a deep RNA-binding proteome for leaf tissues. While 75% of these RBPs can be linked to RNA biology, the remaining 25% were previously not known to interact with RNA. Interestingly, we observed that a large number of proteins related to photosynthesis associate with RNA in vivo, including proteins from the four major photosynthetic supercomplexes. As has previously been reported for mammals, a large proportion of leaf RBPs lack known RNA-binding domains, suggesting unconventional modes of RNA binding. We anticipate that this improved RIC method will provide critical insights into RNA metabolism in plants, including how cellular RBPs respond to environmental, physiological and pathological cues.


Asunto(s)
Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteoma/metabolismo , ARN de Planta/metabolismo , Proteínas de Unión al ARN/metabolismo , Fotosíntesis , Dominios Proteicos , Proteínas de Unión al ARN/química , Reproducibilidad de los Resultados
16.
Optica ; 7(7): 802-812, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34277893

RESUMEN

Rapid cryopreservation of biological specimens is the gold standard for visualizing cellular structures in their true structural context. However, current commercial cryo-fluorescence microscopes are limited to low resolutions. To fill this gap, we have developed cryoSIM, a microscope for 3D super-resolution fluorescence cryo-imaging for correlation with cryo-electron microscopy or cryo-soft X-ray tomography. We provide the full instructions for replicating the instrument mostly from off-the-shelf components and accessible, user-friendly, open-source Python control software. Therefore, cryoSIM democratizes the ability to detect molecules using super-resolution fluorescence imaging of cryopreserved specimens for correlation with their cellular ultrastructure.

17.
Methods Mol Biol ; 2062: 255-276, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31768981

RESUMEN

RNA exosome complexes degrade many different RNA substrates. Substrate selection and targeting to the exosome complex rely on cofactors, which bind to the substrate RNA, recruit the exosome complex, and help to remodel the associated ribonucleoprotein particle to facilitate RNA degradation. These cofactors are RNA-binding proteins, but their interaction with RNA may be very transient because the RNAs they are bound to are rapidly turned over by the exosome complex. Hence, the cofactors involved in the degradation of many exosome substrates are unknown. Here, we describe comparative poly(A)+ RNA interactome capture as a method to screen for novel RNA-binding proteins involved in exosome-dependent RNA decay.For this, we compare the poly(A)+ RNA interactome of wild-type cells to that of RNA surveillance mutants, where the decay of exosome substrates is compromised and occupancy of exosome cofactors on RNA is strongly increased. More specifically, protein-RNA complexes in wild-type and mutant cells are UV-cross-linked in vivo after labeling with the photoactivatable nucleoside analogue 4-thiouracil. Following cell lysis, protein-RNA complexes are selected on oligo d(T) beads, subjected to stringent washes, and eluted in a low salt buffer. After RNase digestion of cross-linked RNA, RNA-binding proteins that are enriched in the mutant samples are identified by quantitative mass spectrometry. Here, we quantitatively compare the RNA-protein interactomes of wild-type and rrp6Δ cells to selectively determine cofactors of the nuclear RNA exosome complex in fission yeast. With minor modifications, the comparative interactome approach can easily be adapted to study a range of different RNA-dependent processes in various cellular systems.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , ARN/metabolismo , Núcleo Celular/metabolismo , Endorribonucleasas/metabolismo , Estabilidad del ARN/fisiología , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Cell ; 176(5): 1054-1067.e12, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30773316

RESUMEN

Vault RNAs (vtRNA) are small non-coding RNAs transcribed by RNA polymerase III found in many eukaryotes. Although they have been linked to drug resistance, apoptosis, and viral replication, their molecular functions remain unclear. Here, we show that vault RNAs directly bind the autophagy receptor sequestosome-1/p62 in human and murine cells. Overexpression of human vtRNA1-1 inhibits, while its antisense LNA-mediated knockdown enhances p62-dependent autophagy. Starvation of cells reduces the steady-state and p62-bound levels of vault RNA1-1 and induces autophagy. Mechanistically, p62 mutants that fail to bind vtRNAs display increased p62 homo-oligomerization and augmented interaction with autophagic effectors. Thus, vtRNA1-1 directly regulates selective autophagy by binding p62 and interference with oligomerization, a critical step of p62 function. Our data uncover a striking example of the potential of RNA to control protein functions directly, as previously recognized for protein-protein interactions and post-translational modifications.


Asunto(s)
Autofagia/genética , Partículas Ribonucleoproteicas en Bóveda/genética , Partículas Ribonucleoproteicas en Bóveda/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Células HeLa , Humanos , Ratones , Células RAW 264.7 , ARN/metabolismo , ARN no Traducido/metabolismo , ARN no Traducido/fisiología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
19.
Mol Cell ; 74(1): 196-211.e11, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30799147

RESUMEN

The compendium of RNA-binding proteins (RBPs) has been greatly expanded by the development of RNA-interactome capture (RIC). However, it remained unknown if the complement of RBPs changes in response to environmental perturbations and whether these rearrangements are important. To answer these questions, we developed "comparative RIC" and applied it to cells challenged with an RNA virus called sindbis (SINV). Over 200 RBPs display differential interaction with RNA upon SINV infection. These alterations are mainly driven by the loss of cellular mRNAs and the emergence of viral RNA. RBPs stimulated by the infection redistribute to viral replication factories and regulate the capacity of the virus to infect. For example, ablation of XRN1 causes cells to be refractory to SINV, while GEMIN5 moonlights as a regulator of SINV gene expression. In summary, RNA availability controls RBP localization and function in SINV-infected cells.


Asunto(s)
Células Epiteliales/virología , Perfilación de la Expresión Génica/métodos , ARN Viral/genética , Proteínas de Unión al ARN/genética , Virus Sindbis/genética , Transcriptoma , Neoplasias del Cuello Uterino/virología , Regiones no Traducidas 5' , Sitios de Unión , Células Epiteliales/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Femenino , Regulación Viral de la Expresión Génica , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN , Virus Sindbis/crecimiento & desarrollo , Virus Sindbis/metabolismo , Virus Sindbis/patogenicidad , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Replicación Viral
20.
Nucleic Acids Res ; 46(22): 12067-12086, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30260431

RESUMEN

Syndesmos (SDOS) is a functionally poorly characterized protein that directly interacts with p53 binding protein 1 (53BP1) and regulates its recruitment to chromatin. We show here that SDOS interacts with another important cancer-linked protein, the chaperone TRAP1, associates with actively translating polyribosomes and represses translation. Moreover, we demonstrate that SDOS directly binds RNA in living cells. Combining individual gene expression profiling, nucleotide crosslinking and immunoprecipitation (iCLIP), and ribosome profiling, we discover several crucial pathways regulated post-transcriptionally by SDOS. Among them, we identify a small subset of mRNAs responsible for the biogenesis of primary cilium that have been linked to developmental and degenerative diseases, known as ciliopathies, and cancer. We discover that SDOS binds and regulates the translation of several of these mRNAs, controlling cilia development.


Asunto(s)
Cilios/genética , Proteínas de Unión al ARN/fisiología , Cilios/metabolismo , Ciliopatías/genética , Células HCT116 , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Neoplasias/genética , Polirribosomas/metabolismo , Unión Proteica/genética , Biosíntesis de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/genética , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...