Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Transl Oncol ; 20(9): 1161-1167, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29374351

RESUMEN

PURPOSE: Increasing evidence shows that altered metabolism is a critical hallmark in colon cancer. There is a strong need to explore the molecular mechanisms underlying cancer metabolism. Whether the aberrant expression of microRNAs contributes to cancer metabolism is not fully understood. miR-328 is a putative potential target of SLC2A1, but the regulating mechanism between them remains unknown. We have examined whether miR-328 directly regulates SLC2A1/GLUT1 expression in colon cancer cells. METHODS: We performed in silico bioinformatic analyses to identify miR-328-mediated molecular pathways and targets. We also performed luciferase assays and western blot analyses in LOVO and SW480 colon cancer cell lines. In addition, we assessed miR-328 expression in 47 paired tumor and normal tissue specimens from resected colon cancer patients. RESULTS: Luciferase reporter assays showed that miR-328 directly targeted SLC2A1 3'-untranslated region (UTR), with a significant decrease in luciferase activity in both LOVO and SW480 cell lines. These results were validated by western blot. miR-328 expression was significantly downregulated in tumor tissue compared with paired normal tissue. CONCLUSIONS: Our results show that miR-328 targets SLC2A1/GLUT1. We suggest that miR-328 may be involved in the orchestration of the Warburg effect in colon cancer cells. Furthermore, miR-328 expression is reduced in colon cancer patients and thus inversely correlates with the classically reported upregulated SLC2A1/GLUT1 expression in tumors.


Asunto(s)
Neoplasias del Colon/metabolismo , Transportador de Glucosa de Tipo 1/genética , MicroARNs/fisiología , Regiones no Traducidas 3' , Anciano , Línea Celular Tumoral , Femenino , Transportador de Glucosa de Tipo 1/fisiología , Humanos , Masculino
2.
Blood Cancer J ; 5: e352, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26430723

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (⩾60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P=0.0025), shorter leukemia-free survival (P=0.026) and higher cumulative incidence of relapse (P=0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P=0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML.


Asunto(s)
Biomarcadores de Tumor/genética , Leucemia Mieloide Aguda/genética , MicroARNs/genética , Proteínas de Neoplasias/genética , Adolescente , Adulto , Anciano , Análisis Citogenético , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Factores de Riesgo , Transcriptoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...