Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1150951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867514

RESUMEN

To date, infertility affects 10% to 15% of couples worldwide. A male factor is estimated to account for up to 50% of cases. Oral supplementation with antioxidants could be helpful to improve sperm quality by reducing oxidative damage. At the same time, there is a growing interest in the literature on the use of testicular sperm in patients with high DNA fragmentation index (DFI). This narrative review aims to evaluate the effectiveness of supplementation of oral antioxidants in infertile men with high DFI compared to testicular sperm retrieval. The current evidence is non-conclusive because of serious risk of bias due to small sample sizes and statistical methods. Further large well-designed randomised placebo-controlled trials are still required to clarify the exact role of these to different therapeutic approaches.


Asunto(s)
Antioxidantes , Infertilidad Masculina , Humanos , Masculino , Antioxidantes/uso terapéutico , Fragmentación del ADN , Infertilidad Masculina/tratamiento farmacológico , Infertilidad Masculina/etiología , Semen , Espermatozoides , Fertilidad
2.
Front Physiol ; 11: 574761, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312128

RESUMEN

The pandemic caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has led to several concerns on male fertility. Nowadays, there are numerous unanswered questions, for example: is the virus present or not in the seminal fluid of infected subjects? Could the seminal fluid represent a way of sexual transmission for the virus? Why do men appear to be more susceptible than women? Several studies have been carried out to ascertain the presence of SARS-CoV-2 in the seminal fluid, with contrasting results; the expression of angiotensin-converting enzyme-2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in the testes and in the male genital tract led to speculation about the possible presence of the virus in the seminal fluid. However, it was found that ACE2 and TMPRSS2, used by the virus to enter host cells, are expressed differently in certain testicle cells (stem germ cells, Leydig and Sertoli cells), yet the testicle cells in which ACE2 and TMPRSS2 molecules are simultaneously expressed are rare. This fact would suggest that the virus is not able to enter testicular cells, that it is not present in the seminal fluid and that it cannot infect male germ cells. However, the direct influence of SARS-CoV-2 on the testes is still to be evaluated, and recent results are very controversial. SARS-CoV-2 could enter the testicle using alternative paths and lead to alterations in testicular functionality. Another plausible consideration is that the COVID-19 disease could also indirectly cause alterations to testicular activity, since the fever and the cytokinic storm generated by the immune system can lead to damage of the testicular activity, consequently compromising male fertility. Although the literature provides controversial evidence, the purpose of this review is to lend a general overview about the state of the art. Despite the lack of studies, it would represent a starting point for further investigation about the effect of this coronavirus on male fertility.

3.
Aging (Albany NY) ; 11(9): 2749-2761, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31085803

RESUMEN

The main goal of semen processing in Assisted Reproductive Techniques (ART) is to select sperm with good viability and, at the same time, remove Reactive Oxygen Species (ROS) sources (such as leukocytes) and reduce the percentage of morphologically abnormal sperm for fertility treatment. We performed a comparative analysis on sperm DNA fragmentation after Density Gradient Centrifugation (DGC) using products sold by two competing companies. Our results showed comparable DNA Fragmentation Index (DFI) after treatment with both DGC products. However, in both cases, a comparable number of samples do not benefit from the treatment. Interestingly, increasing evidences indicated that male age has a negative impact on sperm DNA fragmentation, but the mechanisms underlying age-dependent patterns of sperm decline have not yet been fully understood. Thus, we performed a comparative analysis of DFI before and after treatment with DGC products in age-stratified sample populations. Our results showed a worsening of the baseline DFI in the eldest group and the benefits of DGC on sperm DNA were compromised. In conclusion, our work consolidates the current evidences suggesting that both paternal and maternal aging, critically affects reproductive success.


Asunto(s)
Envejecimiento , Fragmentación del ADN , ADN/metabolismo , Espermatozoides/fisiología , Adulto , Cromatina , Humanos , Masculino , Persona de Mediana Edad , Motilidad Espermática , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...