Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Molecules ; 28(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687048

RESUMEN

The complete mechanism behind starch regulation has not been fully characterized. However, significant progress can be achieved through proteomic approaches. In this work, we aimed to characterize the starch-interacting proteins in potato (Solanum tuberosum L. cv. Desiree) tubers under variable circumstances. Starch-interacting proteins were extracted from developing tubers of wild type and transgenic lines containing antisense inhibition of glucan phosphorylases. Further, proteins were separated by SDS-PAGE and characterized through mass spectrometry. Additionally, starch-interacting proteins were analyzed in potato tubers stored at different temperatures. Most of the proteins strongly interacting with the potato starch granules corresponded to proteins involved in starch metabolism. GWD and PWD, two dikinases associated with starch degradation, were consistently found bound to the starch granules. This indicates that their activity is not only restricted to degradation but is also essential during storage starch synthesis. We confirmed the presence of protease inhibitors interacting with the potato starch surface as previously revealed by other authors. Starch interacting protein profiles of transgenic tubers appeared differently from wild type when tubers were stored under different temperatures, indicating a differential expression in response to changing environmental conditions.


Asunto(s)
Solanum tuberosum , Animales , Solanum tuberosum/genética , Proteómica , Animales Modificados Genéticamente , Electroforesis en Gel de Poliacrilamida , Almidón
2.
Front Plant Sci ; 13: 1039534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407636

RESUMEN

An Arabidopsis mutant lacking both the cytosolic Disproportionating enzyme 2 (DPE2) and the plastidial glucan Phosphorylase 1 (PHS1) revealed a unique starch metabolism. Dpe2/phs1 has been reported to have only one starch granule number per chloroplast when grown under diurnal rhythm. For this study, we analyzed dpe2/phs1 in details following the mutant development, and found that it showed three distinct periods of granule numbers per chloroplast, while there was no obvious change observed in Col-0. In young plants, the starch granule number was similar to that in Col-0 at first, and then decreased significantly, down to one or no granule per chloroplast, followed by an increase in the granule number. Thus, in dpe2/phs1, control over the starch granule number is impaired, but it is not defective in starch granule initiation. The data also indicate that the granule number is not fixed, and is regulated throughout plant growth. Furthermore, the chloroplasts revealed alterations during these three periods, with a partially strong aberrant morphology in the middle phase. Interestingly, the unique metabolism was perpetuated when starch degradation was further impaired through an additional lack of Isoamylase 3 (ISA3) or Starch excess 4 (SEX4). Transcriptomic studies and metabolic profiling revealed the co-regulation of starch metabolism-related genes and a clear metabolic separation between the periods. Most senescence-induced genes were found to be up-regulated more than twice in the starch-less mature leaves. Thus, dpe2/phs1 is a unique plant material source, with which we may study starch granule number regulation to obtain a more detailed understanding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...