Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Microbiol ; 22(8): e13203, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32175652

RESUMEN

Entamoeba histolytica is the causative agent of amebiasis, an infectious disease targeting the intestine and the liver in humans. Two types of intestinal infection are caused by this parasite: silent infection, which occurs in the majority of cases, and invasive disease, which affects 10% of infected persons. To understand the intestinal pathogenic process, several in vitro models, such as cell cultures, human tissue explants or human intestine xenografts in mice, have been employed. Nevertheless, our knowledge on the early steps of amebic intestinal infection and the molecules involved during human-parasite interaction is scarce, in part due to limitations in the experimental settings. In the present work, we took advantage of tissue engineering approaches to build a three-dimensional (3D)-intestinal model that is able to replicate the general characteristics of the human colon. This system consists of an epithelial layer that develops tight and adherens junctions, a mucus layer and a lamina propria-like compartment made up of collagen containing macrophages and fibroblast. By means of microscopy imaging, omics assays and the evaluation of immune responses, we show a very dynamic interaction between E. histolytica and the 3D-intestinal model. Our data highlight the importance of several virulence markers occurring in patients or in experimental models, but they also demonstrate the involvement of under described molecules and regulatory factors in the amoebic invasive process.


Asunto(s)
Amebiasis/parasitología , Entamoeba histolytica/patogenicidad , Intestinos/microbiología , Intestinos/patología , Modelos Anatómicos , Amebiasis/inmunología , Disentería Amebiana/patología , Entamoeba histolytica/inmunología , Interacciones Huésped-Parásitos , Humanos , Inflamación , Microscopía Confocal , Virulencia
3.
Artículo en Inglés | MEDLINE | ID: mdl-32211340

RESUMEN

Lipids are essential players in parasites pathogenesis. In particular, the highly phagocytic trophozoites of Entamoeba histolytica, the causative agent of amoebiasis, exhibit a dynamic membrane fusion and fission, in which lipids strongly participate; particularly during the overstated motility of the parasite to reach and attack the epithelia and ingest target cells. Synthesis and metabolism of lipids in this protozoan present remarkable difference with those performed by other eukaryotes. Here, we reviewed the current knowledge on lipids in E. histolytica. Trophozoites synthesize phosphatidylcholine and phosphatidylethanolamine by the Kennedy pathway; and sphingolipids, phosphatidylserine, and phosphatidylinositol, by processes similar to those used by other eukaryotes. However, trophozoites lack enzymes for cholesterol and fatty acids synthesis, which are scavenged from the host or culture medium by specific mechanisms. Cholesterol, a fundamental molecule for the expression of virulence, is transported from the medium into the trophozoites by EhNPC1 and EhNPC2 proteins. Inside cells, lipids are distributed by different pathways, including by the participation of the endosomal sorting complex required for transport (ESCRT), involved in vesicle fusion and fission. Cholesterol interacts with the phospholipid lysobisphosphatidic acid (LBPA) and EhADH, an ALIX family protein, also involved in phagocytosis. In this review, we summarize the known information on phospholipids synthesis and cholesterol transport as well as their metabolic pathways in E. histolytica; highlighting the mechanisms used by trophozoites to dispose lipids involved in the virulence processes.


Asunto(s)
Entamoeba histolytica/metabolismo , Entamoeba histolytica/patogenicidad , Entamebiasis/parasitología , Metabolismo de los Lípidos , Trofozoítos/metabolismo , Factores de Virulencia/metabolismo , Animales , Colesterol/biosíntesis , Colesterol/metabolismo , Entamoeba histolytica/química , Entamebiasis/metabolismo , Ácidos Grasos/biosíntesis , Humanos , Lípidos/análisis , Fagocitosis , Fosfolípidos/metabolismo , Proteínas Protozoarias/metabolismo , Trofozoítos/química , Virulencia
4.
Data Brief ; 7: 457-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27014730

RESUMEN

Entamoeba histolytica is the protozoan agent responsible for human amoebiasis. Trophozoites are highly phagocytic cells and the lysobisphosphatidic acid (LBPA) is involved in endocytosis. LBPA interacts with EhADH protein (an ALIX family member) also participating in phagocytosis, as it is referred in the research article Identification of the phospholipid lysobisphosphatidic acid in the protozoan Entamoeba histolytica: an active molecule in endocytosis (Castellanos-Castro et al., 2016) [1]. To unveil the interaction site between EhADH and LBPA, here we performed molecular modeling, dynamics simulation and docking. Molecular modeling and docking predictions revealed that EhADH interacts with LBPA through the Bro1 domain, located at the N-terminus of the protein and through the adherence domain at the C-terminus. In silico mutation abolished these interactions, supporting the data obtained in molecular dynamic and docking in silico assays.

5.
Biochem Biophys Rep ; 5: 224-236, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28955828

RESUMEN

Phospholipids are essential for vesicle fusion and fission and both are fundamental events for Entamoeba histolytica phagocytosis. Our aim was to identify the lysobisphosphatidic acid (LBPA) in trophozoites and investigate its cellular fate during endocytosis. LBPA was detected by TLC in a 0.5 Rf spot of total lipids, which co-migrated with the LBPA standard. The 6C4 antibody, against LBPA recognized phospholipids extracted from this spot. Reverse phase LC-ESI-MS and MS/MS mass spectrometry revealed six LBPA species of m/z 772.58-802.68. LBPA was associated to pinosomes and phagosomes. Intriguingly, during pinocytosis, whole cell fluorescence quantification showed that LBPA dropped 84% after 15 min incubation with FITC-Dextran, and after 60 min, it increased at levels close to steady state conditions. Similarly, during erythrophagocytosis, after 15 min, LBPA also dropped in 36% and increased after 60 and 90 min. EhRab7A protein appeared in some vesicles with LBPA in steady state conditions, but after phagocytosis co-localization of both molecules increased and in late phases of erythrophagocytosis they were found in huge phagosomes or multivesicular bodies with many intraluminal vacuoles, and surrounding ingested erythrocytes and phagosomes. The 6C4 and anti-EhADH (EhADH is an ALIX family protein) antibodies and Lysotracker merged in about 50% of the vesicles in steady state conditions and throughout phagocytosis. LBPA and EhADH were also inside huge phagosomes. These results demonstrated that E. histolytica LBPA is associated to pinosomes and phagosomes during endocytosis and suggested differences of LBPA requirements during pinocytosis and phagocytosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...