Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 113(3): 315-325, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36808495

RESUMEN

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that is still fatal in many cases. T cell blasts are characterized by hyperactivation and strong proliferative and migratory capacities. The chemokine receptor CXCR4 is involved in mediating malignant T cell properties, and cortactin has been shown to control CXCR4 surface localization in T-ALL cells. We have previously shown that cortactin overexpression is correlated with organ infiltration and relapse in B-ALL. However, the role of cortactin in T cell biology and T-ALL remains elusive. Here, we analyzed the functional relevance of cortactin for T cell activation and migration and the implications for T-ALL development. We found that cortactin is upregulated in response to T cell receptor engagement and recruited to the immune synapse in normal T cells. Loss of cortactin caused reduced IL-2 production and proliferation. Cortactin-depleted T cells showed defects in immune synapse formation and migrated less due to impaired actin polymerization in response to T cell receptor and CXCR4 stimulation. Leukemic T cells expressed much higher levels of cortactin compared to normal T cells that correlated with greater migratory capacity. Xenotransplantation assays in NSG mice revealed that cortactin-depleted human leukemic T cells colonized the bone marrow significantly less and failed to infiltrate the central nervous system, suggesting that cortactin overexpression drives organ infiltration, which is a major complication of T-ALL relapse. Thus, cortactin could serve as a potential therapeutic target for T-ALL and other pathologies involving aberrant T cell responses.


Asunto(s)
Cortactina , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animales , Ratones , Linfocitos T/metabolismo , Leucocitos , Recurrencia , Movimiento Celular/fisiología
2.
Eur J Cell Biol ; 101(2): 151214, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35286924

RESUMEN

Sepsis remains an important health problem worldwide due to inefficient treatments often resulting in multi-organ failure. Neutrophil recruitment is critical during sepsis. While neutrophils are required to combat invading bacteria, excessive neutrophil recruitment contributes to tissue damage due to their arsenal of molecular weapons that do not distinguish between host and pathogen. Thus, neutrophil recruitment needs to be fine-tuned to ensure bacterial killing, while avoiding neutrophil-inflicted tissue damage. We recently showed that the actin-binding protein HS1 promotes neutrophil extravasation; and hypothesized that HS1 is also a critical regulator of sepsis progression. We evaluated the role of HS1 in a model of lethal sepsis induced by cecal-ligation and puncture. We found that septic HS1-deficient mice had a better survival rate compared to WT mice due to absence of lung damage. Lungs of septic HS1-deficient mice showed less inflammation, fibrosis, and vascular congestion. Importantly, systemic CLP-induced neutrophil recruitment was attenuated in the lungs, the peritoneum and the cremaster in the absence of HS1. Lungs of HS1-deficient mice produced significantly more interleukin-10. Compared to WT neutrophils, those HS1-deficient neutrophils that reached the lungs had increased surface levels of Gr-1, ICAM-1, and L-selectin. Interestingly, HS1-deficient neutrophils had similar F-actin content and phagocytic activity, but they failed to polymerize actin and deform in response to CXCL-1 likely explaining the reduced systemic neutrophil recruitment in HS1-deficient mice. Our data show that HS1 deficiency protects against sepsis by attenuating neutrophil recruitment to amounts sufficient to combat bacterial infection, but insufficient to induce tissue damage.


Asunto(s)
Neutrófilos , Sepsis , Animales , Modelos Animales de Enfermedad , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/fisiología , Neutrófilos/metabolismo
3.
J Leukoc Biol ; 111(6): 1147-1158, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34826347

RESUMEN

Severe coronavirus disease 2019 (COVID-19) is characterized by lung injury, cytokine storm, and increased neutrophil-to-lymphocyte ratio (NLR). Current therapies focus on reducing viral replication and inflammatory responses, but no specific treatment exists to prevent the development of severe COVID-19 in infected individuals. Angiotensin-converting enzyme-2 (ACE2) is the receptor for SARS-CoV-2, the virus causing COVID-19, but it is also critical for maintaining the correct functionality of lung epithelium and endothelium. Coronaviruses induce activation of a disintegrin and metalloprotease 17 (ADAM17) and shedding of ACE2 from the cell surface resulting in exacerbated inflammatory responses. Thus, we hypothesized that ADAM17 inhibition ameliorates COVID-19-related lung inflammation. We employed a preclinical mouse model using intratracheal instillation of a combination of polyinosinic:polycytidylic acid (poly(I:C)) and the receptor-binding domain of the SARS-CoV-2 spike protein (RBD-S) to mimic lung damage associated with COVID-19. Histologic analysis of inflamed mice confirmed the expected signs of lung injury including edema, fibrosis, vascular congestion, and leukocyte infiltration. Moreover, inflamed mice also showed an increased NLR as observed in critically ill COVID-19 patients. Administration of the ADAM17/MMP inhibitors apratastat and TMI-1 significantly improved lung histology and prevented leukocyte infiltration. Reduced leukocyte recruitment could be explained by reduced production of proinflammatory cytokines and lower levels of the endothelial adhesion molecules ICAM-1 and VCAM-1. Additionally, the NLR was significantly reduced by ADAM17/MMP inhibition. Thus, we propose inhibition of ADAM17/MMP as a novel promising treatment strategy in SARS-CoV-2-infected individuals to prevent the progression toward severe COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Lesión Pulmonar , Proteína ADAM17 , Enzima Convertidora de Angiotensina 2 , Animales , Modelos Animales de Enfermedad , Humanos , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Metaloproteinasas de la Matriz , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
4.
Am J Pathol ; 190(5): 958-967, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32084363

RESUMEN

Cortactin is an actin-binding protein expressed in virtually all cell types. It regulates several cell functions, including adhesion and migration. Cortactin overexpression is associated with increased metastasis formation and worse outcome in different types of solid tumors, thus highlighting a critical role of cortactin in cancer progression. Mechanistically, this is due to increased invadopodia formation and matrix metalloproteinase secretion. Cortactin has been until recently considered absent in hematopoietic cells because these cells express the cortactin homolog hematopoietic cell-specific lyn substrate-1. However, many recent reports describe functional expression of cortactin in different hematopoietic cells, such as macrophages, dendritic cells, and lymphocytes. Of note, cortactin is strongly overexpressed in leukemic cell lines and primary patient-derived leukemic cells. In B-cell chronic lymphocytic leukemia, this is associated with poor prognosis and increased chemotaxis; in B-cell acute lymphoblastic leukemia, high cortactin levels correlate with treatment failure and relapse. Moreover, cortactin has been proposed as a diagnostic marker for non-Hodgkin B-cell lymphomas. This review summarizes current knowledge on cortactin expression in hematopoietic cells and discusses the functional implications for different hematological malignancies.


Asunto(s)
Células Sanguíneas/metabolismo , Cortactina/metabolismo , Neoplasias Hematológicas/metabolismo , Animales , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Humanos
5.
Proc Natl Acad Sci U S A ; 116(52): 26752-26758, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31811025

RESUMEN

Neutrophil extravasation is a migratory event in response to inflammation that depends on cytoskeletal dynamics regulated by myosins. Myosin-1e (Myo1e) is a long-tailed class-I myosin that has not yet been studied in the context of neutrophil-endothelial interactions and neutrophil extravasation. Intravital microscopy of TNFα-inflamed cremaster muscles in Myo1e-deficient mice revealed that Myo1e is required for efficient neutrophil extravasation. Specifically, Myo1e deficiency caused increased rolling velocity, decreased firm adhesion, aberrant crawling, and strongly reduced transmigration. Interestingly, we observed a striking discontinuous rolling behavior termed "intermittent rolling," during which Myo1e-deficient neutrophils showed alternating rolling and jumping movements. Surprisingly, chimeric mice revealed that these effects were due to Myo1e deficiency in leukocytes. Vascular permeability was not significantly altered in Myo1e KO mice. Myo1e-deficient neutrophils showed diminished arrest, spreading, uropod formation, and chemotaxis due to defective actin polymerization and integrin activation. In conclusion, Myo1e critically regulates adhesive interactions of neutrophils with the vascular endothelium and neutrophil extravasation. Myo1e may therefore be an interesting target in chronic inflammatory diseases characterized by excessive neutrophil recruitment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA