Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 258(1): 22, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37329469

RESUMEN

MAIN CONCLUSION: Leaf water potential, gas exchange, and chlorophyll fluorescence exhibited significant differences among genotypes, high environmental effects, but low heritability. The highest-yielding and drought-tolerant genotypes presented superior harvest index and grain weight, compared to drought-susceptible ones. Physiological phenotyping can help identify useful traits related to crop performance under water-limited conditions. A set of fourteen bread wheat genotypes with contrasting grain yield (GY) was studied in eight Mediterranean environments in Chile, resulting from the combination of two sites (Cauquenes and Santa Rosa), two water conditions (rainfed-WL and irrigated-WW), and four growing seasons (2015-2018). The objectives were to (i) evaluate the phenotypic variation of leaf photosynthetic traits after heading (anthesis and grain filling) in different environments; (ii) analyze the relationship between GY and leaf photosynthetic traits and carbon isotope discrimination (Δ13C); and (iii) identify those traits that could have a greater impact in the determination of tolerant genotypes under field conditions. Agronomic traits exhibited significant genotypic differences and genotype × environment (GxE) interaction. The average GY under the WW condition at Santa Rosa was 9.2 Mg ha-1 (range 8.2-9.9 Mg ha-1) and under the WL condition at Cauquenes was 6.2 Mg ha-1 (range 3.7-8.3 Mg ha-1). The GY was closely related to the harvest index (HI) in 14 out of 16 environments, a trait exhibiting a relatively high heritability. In general terms, the leaf photosynthetic traits presented low GxE interaction, but high environmental effects and low heritability, except for the chlorophyll content. The relationships between GY and leaf photosynthetic traits were weaker when performed across genotypes in each environment, indicating low genotypic effects, and stronger when performed across environments for each genotype. The leaf area index and Δ13C also presented high environmental effects and low heritability, and their correlations with GY were influenced by environmental effects. The highest-yielding and drought-tolerant genotypes presented superior HI and grain weight, but no clear differences in leaf photosynthetic traits or Δ13C, compared to drought-susceptible ones. It seems that the phenotypic plasticity of agronomic and leaf photosynthetic traits is very important for crop adaptation to Mediterranean environments.


Asunto(s)
Carbono , Triticum , Triticum/genética , Genotipo , Hojas de la Planta/genética , Clorofila , Grano Comestible/genética , Agua , Variación Biológica Poblacional
2.
Plants (Basel) ; 11(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35161273

RESUMEN

The onset and rate of senescence influence key agronomical traits, including grain yield (GY). Our objective was to assess the relationships between stay-green and GY in a set of fourteen spring bread wheat (Triticum aestivum L.) genotypes with contrasting tolerance to water stress. Based on leaf chlorophyll content index (Chl) and normalized vegetation index (NDVI) measurements, the senescence dynamics at leaf and canopy levels, respectively, were quantified. Parameters describing the dynamics of senescence were examined in glasshouse and field experiments under well-watered (WW) and water-limited (WL) regimes, and they included the following stay-green traits: maximum NDVI or Chl near to anthesis (NDVImax, Chlmax), the senescence rate (SR, rate), the area under curve (AreaNDVI, AreaChl), and the time from anthesis to 10 (tonset), 50 (t50, X50) and 90% (t90) senescence. Our results revealed that specific stay-green traits were significantly different among genotypes and water regimes in both glasshouse and field experiments. GY was positively correlated with ttotal (0.42), tonset (0.62) and NDVIdif (0.63). Under WL, NDVIdif and NDVImax correlated with GY (0.66-0.58), but only t50 correlated with GY under WW (0.62), indicating that phenotyping of stay-green trait is a useful tool for tracking the dynamics of senescence in WW and WL environments.

3.
Plants (Basel) ; 11(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35161304

RESUMEN

Quinoa (Chenopodium quinoa Willd.) is a genetically diverse crop that has gained popularity in recent years due to its high nutritional content and ability to tolerate abiotic stresses such as salinity and drought. Varieties from the coastal lowland ecotype are of particular interest due to their insensitivity to photoperiod and their potential to be cultivated in higher latitudes. We performed a field experiment in the southern Atacama Desert in Chile to investigate the responses to reduced irrigation of nine previously selected coastal lowland self-pollinated (CLS) lines and the commercial cultivar Regalona. We found that several lines exhibited a yield and seed size superior to Regalona, also under reduced irrigation. Plant productivity data were analyzed together with morphological and physiological traits measured at the visible inflorescence stage to estimate the contribution of these traits to differences between the CLS lines and Regalona under full and reduced irrigation. We applied proximal sensing methods and found that thermal imaging provided a promising means to estimate variation in plant water use relating to yield, whereas hyperspectral imaging separated lines in a different way, potentially related to photosynthesis as well as water use.

4.
Genes (Basel) ; 13(2)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35205399

RESUMEN

Durum wheat landraces have huge potential for the identification of genetic factors valuable for improving resistance to biotic stresses. Tunisia is known as a hot spot for Septoria tritici blotch disease (STB), caused by the fungus Zymoseptoria tritici (Z. tritici). In this context, a collection of 3166 Mediterranean durum wheat landraces were evaluated at the seedling and adult stages for STB resistance in the 2016-2017 cropping season under field conditions in Kodia (Tunisia). Unadapted/susceptible accessions were eliminated to reach the final set of 1059 accessions; this was termed the Med-collection, which comprised accessions from 13 countries and was also screened in the 2018-2019 cropping season. The Med-collection showed high frequency of resistance reactions, among which over 50% showed an immune reaction (HR) at both seedling and adult growth stages. Interestingly, 92% of HR and R accessions maintained their resistance levels across the two years, confirming the highly significant correlation found between seedling- and adult-stage reactions. Plant Height was found to have a negative significant effect on adult-stage resistance, suggesting that either this trait can influence disease severity, or that it can be due to environmental/epidemiological factors. Accessions from Italy showed the highest variability, while those from Portugal, Spain and Tunisia showed the highest levels of resistance at both growth stages, suggesting that the latter accessions may harbor novel QTLs effective for STB resistance.


Asunto(s)
Ascomicetos , Triticum , Ascomicetos/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantones/genética , Triticum/microbiología , Túnez
5.
Front Plant Sci ; 13: 1026323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36777544

RESUMEN

In this study, daily changes over a short period and diurnal progression of spectral reflectance at the leaf level were used to identify spring wheat genotypes (Triticum aestivum L.) susceptible to adverse conditions. Four genotypes were grown in pots experiments under semi-controlled conditions in Chile and Spain. Three treatments were applied: i) control (C), ii) water stress (WS), and iii) combined water and heat shock (WS+T). Spectral reflectance, gas exchange and chlorophyll fluorescence measurements were performed on flag leaves for three consecutive days at anthesis. High canopy temperature ( H CT ) genotypes showed less variability in their mean spectral reflectance signature and chlorophyll fluorescence, which was related to weaker responses to environmental fluctuations. While low canopy temperature ( L CT ) genotypes showed greater variability. The genotypes spectral signature changes, in accordance with environmental fluctuation, were associated with variations in their stomatal conductance under both stress conditions (WS and WS+T); L CT genotypes showed an anisohydric response compared that of H CT , which was isohydric. This approach could be used in breeding programs for screening a large number of genotypes through proximal or remote sensing tools and be a novel but simple way to identify groups of genotypes with contrasting performances.

6.
Front Plant Sci ; 12: 732988, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046968

RESUMEN

Both the temperate-humid zone and the southern part of the Mediterranean climate region of Chile are characterized by high wheat productivity. Study objectives were to analyze the yield potential, yield progress, and genetic progress of the winter bread wheat (Triticum aestivum L.) cultivars and changes in agronomic and morphophysiological traits during the past 60 years. Thus, two field experiments: (a) yield potential and (b) yield genetic progress trials were conducted in high-yielding environments of central-southern Chile during the 2018/2019 and 2019/2020 seasons. In addition, yield progress was analyzed using yield historical data of a high-yielding environment from 1957 to 2017. Potential yield trials showed that, at the most favorable sites, grain yield reached ∼20.46 Mg ha-1. The prolonged growing and grain filling period, mild temperatures in December-January, ample water availability, and favorable soil conditions explain this high-potential yield. Yield progress analysis indicated that average grain yield increased from 2.70 Mg ha-1 in 1959 to 12.90 Mg ha-1 in 2017, with a 128.8 kg ha-1 per-year increase due to favorable soil and climatic conditions. For genetic progress trials, genetic gain in grain yield from 1965 to 2019 was 70.20 kg ha-1 (0.49%) per year, representing around 55% of the yield progress. Results revealed that the genetic gains in grain yield were related to increases in biomass partitioning toward reproductive organs, without significant increases in Shoot DW production. In addition, reducing trends in the NDVI, the fraction of intercepted PAR, the intercepted PAR (form emergence to heading), and the RGB-derived vegetation indices with the year of cultivar release were detected. These decreases could be due to the erectophile leaf habit, which enhanced photosynthetic activity, and thus grain yield increased. Also, senescence of bottom canopy leaves (starting from booting) could be involved by decreasing the ability of spectral and RGB-derived vegetation indices to capture the characteristics of green biomass after the booting stage. Contrary, a positive correlation was detected for intercepted PAR from heading to maturity, which could be due to a stay-green mechanism, supported by the trend of positive correlations of Chlorophyll content with the year of cultivar release.

7.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630023

RESUMEN

Phytoene synthase 1 (Psy1) and lipoxygenase 1 (Lpx-1) are key genes involved in the synthesis and catalysis of carotenoid pigments in durum wheat, regulating the increase and decrease in these compounds, respectively, resulting in the distinct yellow color of semolina and pasta. Here, we reported new haplotype variants and/or allele combinations of these two genes significantly affecting yellow pigment content in grain and semolina through their effect on carotenoid pigments. To reach the purpose of this work, three complementary approaches were undertaken: the identification of QTLs associated to carotenoid content on a recombinant inbred line (RIL) population, the characterization of a Mediterranean panel of accessions for Psy1 and Lpx-1 genes, and monitoring the expression of Psy1 and Lpx-1 genes during grain filling on two genotypes with contrasting yellow pigments. Our data suggest that Psy1 plays a major role during grain development, contributing to semolina yellowness, and Lpx-1 appears to be more predominant at post-harvest stages and during pasta making.


Asunto(s)
Carotenoides/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Lipooxigenasa/genética , Pigmentación/genética , Triticum/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Lipooxigenasa/metabolismo , Región Mediterránea , Sitios de Carácter Cuantitativo , Triticum/enzimología
8.
Sensors (Basel) ; 19(12)2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31200543

RESUMEN

Canopy temperature (Tc) by thermal imaging is a useful tool to study plant water status and estimate other crop traits. This work seeks to estimate grain yield (GY) and carbon discrimination (Δ13C) from stress degree day (SDD = Tc - air temperature, Ta), considering the effect of a number of environmental variables such as the averages of the maximum vapor pressure deficit (VPDmax) and the ambient temperature (Tmax), and the soil water content (SWC). For this, a set of 384 and a subset of 16 genotypes of spring bread wheat were evaluated in two Mediterranean-climate sites under water stress (WS) and full irrigation (FI) conditions, in 2011 and 2012, and 2014 and 2015, respectively. The relationship between the GY of the 384 wheat genotypes and SDD was negative and highly significant in 2011 (r2 = 0.52 to 0.68), but not significant in 2012 (r2 = 0.03 to 0.12). Under WS, the average GY, Δ13C, and SDD of wheat genotypes growing in ten environments were more associated with changes in VPDmax and Tmax than with the SWC. Therefore, the amount of water available to the plant is not enough information to assume that a particular genotype is experiencing a stress condition.


Asunto(s)
Grano Comestible/genética , Procesamiento de Imagen Asistido por Computador/métodos , Triticum/genética , Carbono/química , Carbono/metabolismo , Isótopos de Carbono/química , Clima , Grano Comestible/química , Genotipo , Proteínas del Tejido Nervioso , Fenotipo , Suelo/química , Temperatura , Triticum/química , Agua/química , Proteínas de Pez Cebra
9.
Front Plant Sci ; 10: 404, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024582

RESUMEN

In Mediterranean climates soil water deficit occurs mainly during the spring and summer, having a great impact on cereal productivity. While previous studies have indicated that the grain yield (GY) of triticale is usually higher than bread wheat (Triticum aestivum L.), comparatively little is known about the performance of these crops under water-limited conditions or the physiological traits involved in the different yields of both crops. For this purpose, two sets of experiments were conducted in order to compare a high yielding triticale (cv. Aguacero) and spring wheat (cvs. Pandora and Domo). The first experiment, aiming to analyze the agronomic performance, was carried out in 10 sites located across a wide range of Mediterranean and temperate environments, distributed between 33°34' and 38°41' S. The second experiment, aiming to identify potential physiological traits linked to the different yields of the two crops, was conducted in two Mediterranean sites (Cauquenes and Santa Rosa) in which crops were grown under well-watered (WW) and water-limited (WL) conditions. The relationship between GY and the environmental index revealed that triticale exhibited a higher regression coefficient (Finlay and Wilkinson slope), indicating a more stable response to the environment, accompanied by higher yields than bread wheat. Harvest index was not significantly different between the two cereals, but triticale had higher kernels per spike (35%) and 1000 kernel weight (16%) than wheat, despite a lower number of spikes per square meter. The higher yield of triticale was linked to higher values of chlorophyll content, leaf net photosynthesis (An), the maximum rate of electron transport (ETRmax), the photochemical quantum yield of PSII [Y(II)] and leaf water-use efficiency. GY was positively correlated with Ci at anthesis and Δ13C in both species, as well as with gs at anthesis in triticale, but negatively correlated with non-photochemical fluorescence quenching and quantum yield of non-photochemical energy conversion at grain filling in wheat. These results revealed that triticale presented higher photosynthetic rates that contributed to increase plant growth and yield in the different environments, whereas wheat showed higher photoprotection system in detriment of assimilate production.

10.
Front Plant Sci ; 7: 987, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27458470

RESUMEN

Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ(13)C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha(-1) under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ(13)C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...