Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37808662

RESUMEN

Cell proliferation is a ubiquitous process required for organismal development and homeostasis. However, individuals with partial loss-of-function variants in DNA replicative helicase components often present with immunodeficiency due to specific loss of natural killer (NK) cells. Such lineage-specific disease phenotypes raise questions on how the proliferation is regulated in cell type-specific manner. We aimed to understand NK cell-specific proliferative dynamics and vulnerability to impaired helicase function using iPSCs from individuals with NK cell deficiency (NKD) due to hereditary compound heterozygous GINS4 variants. We observed and characterized heterogeneous cell populations that arise during the iPSC differentiation along with NK cells. While overall cell proliferation decreased with differentiation, early NK cell precursors showed a short burst of cell proliferation. GINS4 deficiency induced replication stress in these early NK cell precursors, which are poised for apoptosis, and ultimately recapitulate the NKD phenotype.

2.
Life Sci Alliance ; 6(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37813488

RESUMEN

Skeletal muscle regeneration involves coordinated activation of an array of signaling pathways. Fibroblast growth factor-inducible 14 (Fn14) is a bona fide receptor for the TWEAK cytokine. Levels of Fn14 are increased in the skeletal muscle of mice after injury. However, the cell-autonomous role of Fn14 in muscle regeneration remains unknown. Here, we demonstrate that global deletion of the Fn14 receptor in mice attenuates muscle regeneration. Conditional ablation of Fn14 in myoblasts but not in differentiated myofibers of mice inhibits skeletal muscle regeneration. Fn14 promotes myoblast fusion without affecting the levels of myogenic regulatory factors in the regenerating muscle. Fn14 deletion in myoblasts hastens initial differentiation but impairs their fusion. The overexpression of Fn14 in myoblasts results in the formation of myotubes having an increased diameter after induction of differentiation. Ablation of Fn14 also reduces the levels of various components of canonical Wnt and calcium signaling both in vitro and in vivo. Forced activation of Wnt signaling rescues fusion defects in Fn14-deficient myoblast cultures. Collectively, our results demonstrate that Fn14-mediated signaling positively regulates myoblast fusion and skeletal muscle regeneration.


Asunto(s)
Comunicación Celular , Mioblastos , Receptor de TWEAK , Animales , Ratones , Diferenciación Celular , Desarrollo de Músculos , Mioblastos/metabolismo , Vía de Señalización Wnt , Receptor de TWEAK/metabolismo
3.
Front Immunol ; 14: 1188831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744342

RESUMEN

Introduction: We present here a strategy to identify immunogenic neoantigen candidates from unique amino acid sequences at the junctions of fusion proteins which can serve as targets in the development of tumor vaccines for the treatment of breastcancer. Method: We mined the sequence reads of breast tumor tissue that are usually discarded as discordant paired-end reads and discovered cancer specific fusion transcripts using tissue from cancer free controls as reference. Binding affinity predictions of novel peptide sequences crossing the fusion junction were analyzed by the MHC Class I binding predictor, MHCnuggets. CD8+ T cell responses against the 15 peptides were assessed through in vitro Enzyme Linked Immunospot (ELISpot). Results: We uncovered 20 novel fusion transcripts from 75 breast tumors of 3 subtypes: TNBC, HER2+, and HR+. Of these, the NSFP1-LRRC37A2 fusion transcript was selected for further study. The 3833 bp chimeric RNA predicted by the consensus fusion junction sequence is consistent with a read-through transcription of the 5'-gene NSFP1-Pseudo gene NSFP1 (NSFtruncation at exon 12/13) followed by trans-splicing to connect withLRRC37A2 located immediately 3' through exon 1/2. A total of 15 different 8-mer neoantigen peptides discovered from the NSFP1 and LRRC37A2 truncations were predicted to bind to a total of 35 unique MHC class I alleles with a binding affinity of IC50<500nM.); 1 of which elicited a robust immune response. Conclusion: Our data provides a framework to identify immunogenic neoantigen candidates from fusion transcripts and suggests a potential vaccine strategy to target the immunogenic neopeptides in patients with tumors carrying the NSFP1-LRRC37A2 fusion.


Asunto(s)
Neoplasias de la Mama , Vacunas contra el Cáncer , Neoplasias Mamarias Animales , Humanos , Animales , Femenino , Neoplasias de la Mama/genética , Genes MHC Clase I , Mama
4.
bioRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693495

RESUMEN

Aims: The mechanisms regulating the cellular behavior and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how ß1 integrins regulate cardiomyocyte behavior and organization during ventricular wall morphogenesis in the mouse. Methods and Results: We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/ß integrins and their ligands in the embryonic heart. Integrin ß1 subunit (ß1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, while fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1 , which encodes the ß1 integrin subunit, was deleted via Nkx2.5 Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of trabecular zone but a thicker compact zone. The abundances of hyaluronic acid and versican are not significantly different. Instead, fibronectin, a ligand of ß1, was absent in B1KO. We examined cellular behaviors and organization via various tools. B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. The reduction of Notch1 activation was not the cause of the abnormal cellular organization in B1KO hearts. Mosaic clonal lineage tracing shows that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously. Conclusions: ß1 is asymmetrically localized in the cardiomyocytes, and its ECM ligands are enriched in the luminal side of the myocardium and surrounding cardiomyocytes. ß1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 , leading to ablation of ß1 integrins, causes the dissociation of cardiomyocytes from the ECM network and failure to establish tissue architecture to form trabeculae.

5.
Res Sq ; 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37503252

RESUMEN

While the nervous system has reciprocal interactions with both cancer and the immune system, little is known about the potential role of tumor associated nerves (TANs) in modulating anti-tumoral immunity. Moreover, while peri-neural invasion is a well establish poor prognostic factor across cancer types, the mechanisms driving this clinical effect remain unknown. Here, we provide clinical and mechniastic association between TANs damage and resistance to anti-PD-1 therapy. Using electron microscopy, electrical conduction studies, and tumor samples of cutaneous squamous cell carcinoma (cSCC) patients, we showed that cancer cells can destroy myelin sheath and induce TANs degeneration. Multi-omics and spatial analyses of tumor samples from cSCC patients who underwent neoadjuvant anti-PD-1 therapy demonstrated that anti-PD-1 non-responders had higher rates of peri-neural invasion, TANs damage and degeneration compared to responders, both at baseline and following neoadjuvant treatment. Tumors from non-responders were also characterized by a sustained signaling of interferon type I (IFN-I) - known to both propagate nerve degeneration and to dampen anti-tumoral immunity. Peri-neural niches of non-responders were characterized by higher immune activity compared to responders, including immune-suppressive activity of M2 macrophages, and T regulatory cells. This tumor promoting inflammation expanded to the rest of the tumor microenvironment in non-responders. Anti-PD-1 efficacy was dampened by inducing nerve damage prior to treatment administration in a murine model. In contrast, anti-PD-1 efficacy was enhanced by denervation and by interleukin-6 blockade. These findings suggested a potential novel anti-PD-1 resistance drived by TANs damage and inflammation. This resistance mechanism is targetable and may have therapeutic implications in other neurotropic cancers with poor response to anti-PD-1 therapy such as pancreatic, prostate, and breast cancers.

6.
Microbiol Resour Announc ; 8(39)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31558644

RESUMEN

Klebsiella pneumoniae is a commonly antibiotic-resistant human pathogen. This report describes the complete genome sequence and important features of Sin4, a siphophage infecting carbapenemase-producing K. pneumoniae By its genome size, predicted packaging mechanism, protein similarity, and classification given to its closest relatives, Sin4 was determined to be a T1-like phage.

7.
Microbiol Resour Announc ; 8(38)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537682

RESUMEN

Escherichia coli is a Gram-negative bacterium that is found in humans and animals as both a commensal organism and a pathogen. This report describes the isolation of Sciku, a siphophage infecting E. coli 4s, with 73 protein-coding genes. Genome comparisons suggest that Sciku is related to phages within Guernseyvirinae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...