Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 59(11): 2366-2380, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30101323

RESUMEN

Auxin homeostasis is a highly regulated process that must be maintained to allow auxin to exert critical growth and developmental controls. Auxin conjugase and hydrolase family proteins play important roles in auxin homeostasis through means of storage, activation, inactivation, response inhibition and degradation of auxins in plants. We systematically evaluated 60 GRETCHEN HAGEN3 (GH3) proteins from diverse plant species for amino acid conjugation activity with the known substrates jasmonic acid (JA), IAA and 4-hydroxybenzoate (4-HBA). While our results largely confirm that Group II conjugases prefer IAA, we observed no clear substrate preference among Group III proteins, and only three of 11 Group I proteins showed the expected preference for JA, indicating that sequence similarity does not always predict substrate specificity. Such a sequence-substrate relationship held true when sequence similarity at the acyl acid-binding site was used for grouping. Several GH3 proteins could catalyze formation of the potentially degradation-destined aspartate (Asp) and glutamate (Glu) conjugates of IAA and the synthetic auxins 2,4-D and dicamba. We found that 2,4-D-Asp/Glu conjugates, but not dicamba and IAA conjugates, were hydrolyzed in Arabidopsis and soybean by AtILL5- and AtIAR3-like amidohydrolases, releasing free 2,4-D in plant cells when conjugates were exogenously applied to seedlings. Dicamba-Asp or dicamba-Glu conjugates were not hydrolyzed in vivo in infiltrated plants nor in vitro with recombinant amidohydrolases. These findings could open the door for exploration of a dicamba herbicide tolerance strategy through conjugation.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/metabolismo , Ácido Aspártico/metabolismo , Dicamba/metabolismo , Ácido Glutámico/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Benzoatos/metabolismo , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Glycine max/metabolismo , Especificidad por Sustrato
2.
Plant Physiol ; 166(3): 1162-76, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25192697

RESUMEN

With an optimized expression cassette consisting of the soybean (Glycine max) native promoter modified for enhanced expression driving a chimeric gene coding for the soybean native amino-terminal 86 amino acids fused to an insensitive shuffled variant of maize (Zea mays) 4-hydroxyphenylpyruvate dioxygenase (HPPD), we achieved field tolerance in transgenic soybean plants to the HPPD-inhibiting herbicides mesotrione, isoxaflutole, and tembotrione. Directed evolution of maize HPPD was accomplished by progressively incorporating amino acids from naturally occurring diversity and novel substitutions identified by saturation mutagenesis, combined at random through shuffling. Localization of heterologously expressed HPPD mimicked that of the native enzyme, which was shown to be dually targeted to chloroplasts and the cytosol. Analysis of the native soybean HPPD gene revealed two transcription start sites, leading to transcripts encoding two HPPD polypeptides. The N-terminal region of the longer encoded peptide directs proteins to the chloroplast, while the short form remains in the cytosol. In contrast, maize HPPD was found almost exclusively in chloroplasts. Evolved HPPD enzymes showed insensitivity to five inhibitor herbicides. In 2013 field trials, transgenic soybean events made with optimized promoter and HPPD variant expression cassettes were tested with three herbicides and showed tolerance to four times the labeled rates of mesotrione and isoxaflutole and two times the labeled rates of tembotrione.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , Glycine max/enzimología , Herbicidas/farmacología , 4-Hidroxifenilpiruvato Dioxigenasa/genética , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Secuencia de Aminoácidos , Ciclohexanonas/química , Ciclohexanonas/farmacología , Expresión Génica , Herbicidas/química , Isoxazoles , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Alineación de Secuencia , Glycine max/efectos de los fármacos , Glycine max/genética
3.
Pest Manag Sci ; 70(12): 1831-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24425499

RESUMEN

BACKGROUND: Sulfonylurea (SU) herbicides are effective because they inhibit acetolactate synthase (ALS), a key enzyme in branched-chain amino acid synthesis required for plant growth. A soybean line known as W4-4 was developed through rounds of seed mutagenesis and was demonstrated to have a high degree of ALS-based resistance to both post-emergence and pre-emergence applications of a variety of SU herbicides. This report describes the molecular and phenotypic characterization of the Als1 and Als2 mutations that confer herbicide resistance to SUs and other ALS inhibitors. RESULTS: The mutations are shown to occur in two different ALS genes that reside on different chromosomes: Als1 (P178S) on chromosome 4 and Als2 (W560L) on chromosome 6 (P197S and W574L in Arabidopsis thaliana). CONCLUSION: Although the Als1 and Als2 genes are unlinked, the combination of these two mutations is synergistic for improved tolerance of soybeans to ALS-inhibiting herbicides.


Asunto(s)
Acetolactato Sintasa/genética , Glycine max/enzimología , Glycine max/genética , Resistencia a los Herbicidas/genética , Herbicidas/toxicidad , Secuencia de Bases , Datos de Secuencia Molecular , Mutación/genética , Reacción en Cadena de la Polimerasa , Glycine max/efectos de los fármacos , Compuestos de Sulfonilurea/toxicidad
4.
J Biol Chem ; 282(15): 11446-55, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17272278

RESUMEN

GAT is an N-acetyltransferase from Bacillus licheniformis that was optimized by gene shuffling for acetylation of the broad spectrum herbicide, glyphosate, forming the basis of a novel mechanism of glyphosate tolerance in transgenic plants (Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y. H., Bertain, S., Cho, H. J., Duck, N., Wong, J., Liu, D., and Lassner, M. W. (2004) Science 304, 1151-1154). The 1.6-A resolution crystal structure of an optimized GAT variant in ternary complex with acetyl coenzyme A and a competitive inhibitor, 3-phosphoglyerate, defines GAT as a member of the GCN5-related family of N-acetyltransferases. Four active site residues (Arg-21, Arg-73, Arg-111, and His-138) contribute to a positively charged substrate-binding site that is conserved throughout the GAT subfamily. Structural and kinetic data suggest that His-138 functions as a catalytic base via substrate-assisted deprotonation of the glyphosate secondary amine, whereas another active site residue, Tyr-118, functions as a general acid. Although the physiological substrate is unknown, native GAT acetylates D-2-amino-3-phosphonopropionic acid with a kcat/Km of 1500 min-1 mM-1. Kinetic data show preferential binding of short analogs to native GAT and progressively better binding of longer analogs to optimized variants. Despite a 200-fold increase in kcat and a 5.4-fold decrease in Km for glyphosate, only 4 of the 21 substitutions present in R7 GAT lie in the active site. Single-site revertants constructed at these positions suggest that glyphosate binding is optimized through substitutions that increase the size of the substrate-binding site. The large improvement in kcat is likely because of the cooperative effects of additional substitutions located distal to the active site.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Bacillus/enzimología , Aciltransferasas/genética , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Glicina/análogos & derivados , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Glifosato
5.
Curr Opin Biotechnol ; 17(2): 105-12, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16483761

RESUMEN

For thousands of years farm practices have evolved as new innovations have become available. Farmers want more value per unit of land, clean fields, and high yields with less input. Plants with incorporated pest resistance and herbicide resistance help meet these needs through increased yield, reduced chemical use, and reduced soil impacts. Although researchers have developed useful traits for a wide variety of plant species, only a few traits are available commercially; however, global adoption of these traits has and continues to increase rapidly. Availability of future traits will be dependent on input not only from researchers, but from governments, interest groups, processors, distributors and ultimately consumers, in addition to the farmers that drive demand for transgenic seed.


Asunto(s)
Biotecnología/tendencias , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/genética , Resistencia a Múltiples Medicamentos/genética , Herbicidas/farmacología , Animales , Productos Agrícolas/microbiología , Productos Agrícolas/virología , Predicción
6.
Proc Natl Acad Sci U S A ; 102(25): 8887-92, 2005 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-15951425

RESUMEN

The success of structural studies performed on an individual target in small scale or on many targets in the system-wide scale of structural genomics depends critically on three parameters: (i) obtaining an expression system capable of producing large quantities of the macromolecule(s) of interest, (ii) purifying this material in soluble form, and (iii) obtaining diffraction-quality crystals suitable for x-ray analysis. The attrition rate caused by these constraints is often quite high. Here, we present a strategy that addresses each of these three parameters simultaneously. Using DNA shuffling to introduce functional sequence variability into a protein of interest, we screened crude lysate supernatants for soluble variants that retain enzymatic activity. Crystallization trials performed on three WT and eight shuffled enzymes revealed two variants that crystallized readily. One of these was used to determine the high-resolution structure of the enzyme by x-ray analysis. The sequence diversity introduced through shuffling efficiently samples crystal packing space by modifying the surface properties of the enzyme. The approach demonstrated here does not require guidance as to the type of mutation necessary for improvements in expression, solubility, or crystallization. The method is scaleable and can be applied in situations where a single protein is being studied or in high-throughput structural genomics programs. Furthermore, it should be readily applied to structural studies of soluble proteins, membrane proteins, and macromolecular complexes.


Asunto(s)
Acetiltransferasas/química , Barajamiento de ADN/métodos , Acetiltransferasas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Bacillus/enzimología , Cristalización , Cristalografía por Rayos X , Escherichia coli/enzimología , Genómica , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
7.
Pest Manag Sci ; 61(3): 235-40, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15668959

RESUMEN

N-Acetylation is a modification of glyphosate that could potentially be used in transgenic crops, given a suitable acetyltransferase. Weak enzymatic activity (k(cat) = 5 min(-1), K(M) = 1 mM) for N-acetylation of glyphosate was discovered in several strains of Bacillus licheniformis (Weigmann) Chester by screening a microbial collection with a mass spectrometric assay. The parental enzyme conferred no tolerance to glyphosate in any host when expressed as a transgene. Eleven iterations of DNA shuffling resulted in a 7000-fold improvement in catalytic efficiency (k(cat)/K(M)), sufficient for conferring robust tolerance to field rates of glyphosate in transgenic tobacco and maize. In terms of k(cat)/K(M), the native enzyme exhibited weak activity (4-450% of that with glyphosate) with seven of the common amino acids. Evolution of the enzyme towards an improved k(cat)/K(M) for glyphosate resulted in increased activity toward aspartate (40-fold improved k(cat)), but activity with serine and phosphoserine almost completely vanished. No activity was observed among a broad sampling of nucleotides and antibiotics. Improved catalysis with glyphosate coincided with increased thermal stability.


Asunto(s)
Acetiltransferasas/metabolismo , Evolución Molecular Dirigida , Glicina/análogos & derivados , Glicina/metabolismo , Herbicidas/metabolismo , Acetiltransferasas/química , Acetiltransferasas/genética , Bacillus/enzimología , Estabilidad de Enzimas , Plantas Modificadas Genéticamente/efectos de los fármacos , Especificidad por Sustrato , Nicotiana/genética , Zea mays/genética , Glifosato
8.
Science ; 304(5674): 1151-4, 2004 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-15155947

RESUMEN

The herbicide glyphosate is effectively detoxified by N-acetylation. We screened a collection of microbial isolates and discovered enzymes exhibiting glyphosate N-acetyltransferase (GAT) activity. Kinetic properties of the discovered enzymes were insufficient to confer glyphosate tolerance to transgenic organisms. Eleven iterations of DNA shuffling improved enzyme efficiency by nearly four orders of magnitude from 0.87 mM-1 min-1 to 8320 mM-1 min-1. From the fifth iteration and beyond, GAT enzymes conferred increasing glyphosate tolerance to Escherichia coli, Arabidopsis, tobacco, and maize. Glyphosate acetylation provides an alternative strategy for supporting glyphosate use on crops.


Asunto(s)
Acetiltransferasas/genética , Barajamiento de ADN , Evolución Molecular Dirigida , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Plantas Modificadas Genéticamente , Acetilación , Acetiltransferasas/química , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Bacillus/enzimología , Catálisis , Resistencia a Medicamentos , Escherichia coli/genética , Biblioteca de Genes , Variación Genética , Glicina/metabolismo , Herbicidas/metabolismo , Cinética , Datos de Secuencia Molecular , Mutagénesis , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/metabolismo , Recombinación Genética , Nicotiana/efectos de los fármacos , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Transformación Genética , Zea mays/efectos de los fármacos , Zea mays/genética , Zea mays/crecimiento & desarrollo , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...