Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(11): e10683, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020675

RESUMEN

Predators must contend with numerous challenges to successfully find and subjugate prey. Complex traits related to hunting are partially controlled by a large number of co-evolved genes, which may be disrupted in hybrids. Accordingly, research on the feeding ecology of animals in hybrid zones has shown that hybrids sometimes exhibit transgressive or novel behaviors, yet for many taxa, empirical studies of predation and diet across hybrid zones are lacking. We undertook the first such field study for a hybrid zone between two snake species, the Mojave rattlesnake (Crotalus scutulatus) and the prairie rattlesnake (Crotalus viridis). Specifically, we leveraged established field methods to quantify the hunting behaviors of animals, their prey communities, and the diet of individuals across the hybrid zone in southwestern New Mexico, USA. We found that, even though hybrids had significantly lower body condition indices than snakes from either parental group, hybrids were generally similar to non-hybrids in hunting behavior, prey encounter rates, and predatory attack and success. We also found that, compared to C. scutulatus, C. viridis was significantly more active while hunting at night and abandoned ambush sites earlier in the morning, and hybrids tended to be more viridis-like in this respect. Prey availability was similar across the study sites, including within the hybrid zone, with kangaroo rats (Dipodomys spp.) as the most common small mammal, both in habitat surveys and the frequency of encounters with hunting rattlesnakes. Analysis of prey remains in stomachs and feces also showed broad similarity in diets, with all snakes preying primarily on small mammals and secondarily on lizards. Taken together, our results suggest that the significantly lower body condition of hybrids does not appear to be driven by differences in their hunting behavior or diet and may instead relate to metabolic efficiency or other physiological traits we have not yet identified.

2.
Mol Ecol ; 32(22): 6000-6017, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37861454

RESUMEN

Hybridization facilitates recombination between divergent genetic lineages and can be shaped by both neutral and selective processes. Upon hybridization, loci with no net fitness effects introgress randomly from parental species into the genomes of hybrid individuals. Conversely, alleles from one parental species at some loci may provide a selective advantage to hybrids, resulting in patterns of introgression that do not conform to random expectations. We investigated genomic patterns of differential introgression in natural hybrids of two species of Caribbean anoles, Anolis pulchellus and A. krugi in Puerto Rico. Hybrids exhibit A. pulchellus phenotypes but possess A. krugi mitochondrial DNA, originated from multiple, independent hybridization events, and appear to have replaced pure A. pulchellus across a large area in western Puerto Rico. Combining genome-wide SNP datasets with bioinformatic methods to identify signals of differential introgression in hybrids, we demonstrate that the genomes of hybrids are dominated by pulchellus-derived alleles and show only 10%-20% A. krugi ancestry. The majority of A. krugi loci in hybrids exhibit a signal of non-random differential introgression and include loci linked to genes involved in development and immune function. Three of these genes (delta like canonical notch ligand 1, jagged1 and notch receptor 1) affect cell differentiation and growth and interact with mitochondrial function. Our results suggest that differential non-random introgression for a subset of loci may be driven by selection favouring the inheritance of compatible mitochondrial and nuclear-encoded genes in hybrids.


Asunto(s)
Genoma , Mitocondrias , Humanos , Mitocondrias/genética , Hibridación Genética , ADN Mitocondrial/genética , Puerto Rico
3.
Mol Biol Evol ; 37(9): 2706-2710, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32658964

RESUMEN

Due to the scope and impact of the COVID-19 pandemic there exists a strong desire to understand where the SARS-CoV-2 virus came from and how it jumped species boundaries to humans. Molecular evolutionary analyses can trace viral origins by establishing relatedness and divergence times of viruses and identifying past selective pressures. However, we must uphold rigorous standards of inference and interpretation on this topic because of the ramifications of being wrong. Here, we dispute the conclusions of Xia (2020. Extreme genomic CpG deficiency in SARS-CoV-2 and evasion of host antiviral defense. Mol Biol Evol. doi:10.1093/molbev/masa095) that dogs are a likely intermediate host of a SARS-CoV-2 ancestor. We highlight major flaws in Xia's inference process and his analysis of CpG deficiencies, and conclude that there is no direct evidence for the role of dogs as intermediate hosts. Bats and pangolins currently have the greatest support as ancestral hosts of SARS-CoV-2, with the strong caveat that sampling of wildlife species for coronaviruses has been limited.


Asunto(s)
Alphacoronavirus/genética , Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Genoma Viral , Pandemias , Neumonía Viral/epidemiología , Virus Reordenados/genética , Alphacoronavirus/clasificación , Alphacoronavirus/patogenicidad , Animales , Betacoronavirus/clasificación , Betacoronavirus/patogenicidad , Evolución Biológica , COVID-19 , Quirópteros/virología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Islas de CpG , Perros , Euterios/virología , Humanos , Evasión Inmune/genética , Neumonía Viral/inmunología , Neumonía Viral/transmisión , Neumonía Viral/virología , Unión Proteica , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/metabolismo , Virus Reordenados/clasificación , Virus Reordenados/patogenicidad , SARS-CoV-2 , Replicación Viral
4.
Mol Phylogenet Evol ; 147: 106770, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32084510

RESUMEN

New world coralsnakes of the genus Micrurus are a diverse radiation of highly venomous and brightly colored snakes that range from North Carolina to Argentina. Species in this group have played central roles in developing and testing hypotheses about the evolution of mimicry and aposematism. Despite their diversity and prominence as model systems, surprisingly little is known about species boundaries and phylogenetic relationships within Micrurus, which has substantially hindered meaningful analyses of their evolutionary history. Here we use mitochondrial genes together with thousands of nuclear genomic loci obtained via ddRADseq to study the phylogenetic relationships and population genomics of a subclade of the genus Micrurus: The M. diastema species complex. Our results indicate that prior species and species-group inferences based on morphology and color pattern have grossly misguided taxonomy, and that the M. diastema complex is not monophyletic. Based on our analyses of molecular data, we infer the phylogenetic relationships among species and populations, and provide a revised taxonomy for the group. Two non-sister species-complexes with similar color patterns are recognized, the M. distans and the M. diastema complexes, the first being basal to the monadal Micrurus and the second encompassing most North American monadal taxa. We examined all 13 species, and their respective subspecies, for a total of 24 recognized taxa in the M. diastema species complex. Our analyses suggest a reduction to 10 species, with no subspecific designations warranted, to be a more likely estimate of species diversity, namely, M. apiatus, M. browni, M. diastema, M. distans, M. ephippifer, M. fulvius, M. michoacanensis, M. oliveri, M. tener, and one undescribed species.


Asunto(s)
Biodiversidad , Serpientes de Coral/genética , Genoma , Filogenia , Polimorfismo de Nucleótido Simple/genética , Animales , Argentina , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Variación Genética , Genética de Población , Geografía , Funciones de Verosimilitud , Nucleótidos/genética , Pigmentación/genética , Análisis de Componente Principal , Especificidad de la Especie
5.
Zootaxa ; 4683(1): zootaxa.4683.1.7, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31715939

RESUMEN

The Mohave Rattlesnake (Crotalus scutulatus) is a highly venomous pitviper inhabiting the arid interior deserts, grasslands, and savannas of western North America. Currently two subspecies are recognized: the Northern Mohave Rattlesnake (C. s. scutulatus) ranging from southern California to the southern Central Mexican Plateau, and the Huamantla Rattlesnake (C. s. salvini) from the region of Tlaxcala, Veracruz, and Puebla in south-central Mexico. Although recent studies have demonstrated extensive geographic variation in venom composition and cryptic genetic diversity in this species, no modern studies have focused on geographic variation in morphology. Here we analyzed a series of qualitative, meristic, and morphometric traits from 347 specimens of C. scutulatus and show that this species is phenotypically cohesive without discrete subgroups, and that morphology follows a continuous cline in primarily color pattern and meristic traits across the major axis of its expansive distribution. Interpreted in the context of previously published molecular evidence, our morphological analyses suggest that multiple episodes of isolation and secondary contact among metapopulations during the Pleistocene were sufficient to produce distinctive genetic populations, which have since experienced gene flow to produce clinal variation in phenotypes without discrete or diagnosable distinctions among these original populations. For taxonomic purposes, we recommend that C. scutulatus be retained as a single species, although it is possible that C. s. salvini, which is morphologically the most distinctive population, could represent a peripheral isolate in the initial stages of speciation.


Asunto(s)
Venenos de Crotálidos , Crotalus , Viperidae , Animales , California , México
6.
Genome Biol Evol ; 11(11): 3123-3143, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31642474

RESUMEN

Convergent evolution is often documented in organisms inhabiting isolated environments with distinct ecological conditions and similar selective regimes. Several Central America islands harbor dwarf Boa populations that are characterized by distinct differences in growth, mass, and craniofacial morphology, which are linked to the shared arboreal and feast-famine ecology of these island populations. Using high-density RADseq data, we inferred three dwarf island populations with independent origins and demonstrate that selection, along with genetic drift, has produced both divergent and convergent molecular evolution across island populations. Leveraging whole-genome resequencing data for 20 individuals and a newly annotated Boa genome, we identify four genes with evidence of phenotypically relevant protein-coding variation that differentiate island and mainland populations. The known roles of these genes involved in body growth (PTPRS, DMGDH, and ARSB), circulating fat and cholesterol levels (MYLIP), and craniofacial development (DMGDH and ARSB) in mammals link patterns of molecular evolution with the unique phenotypes of these island forms. Our results provide an important genome-wide example for quantifying expectations of selection and convergence in closely related populations. We also find evidence at several genomic loci that selection may be a prominent force of evolutionary change-even for small island populations for which drift is predicted to dominate. Overall, while phenotypically convergent island populations show relatively few loci under strong selection, infrequent patterns of molecular convergence are still apparent and implicate genes with strong connections to convergent phenotypes.


Asunto(s)
Boidae/genética , Flujo Genético , Variación Genética , Selección Genética/genética , Animales , Belice , Evolución Molecular , Genética de Población , Genoma , Honduras , Islas , Fenotipo , Filogenia
7.
Mol Phylogenet Evol ; 127: 669-681, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29902574

RESUMEN

The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus. We used mitochondrial DNA and thousands of nuclear loci from double-digest restriction site associated DNA sequencing to infer population genetic structure throughout the range of C. scutulatus, and to evaluate divergence times and gene flow between populations. We find strong support for several divergent mitochondrial and nuclear clades of C. scutulatus, including splits coincident with two major phylogeographic barriers: the Continental Divide and the elevational increase associated with the Central Mexican Plateau. We apply Bayesian clustering, phylogenetic inference, and coalescent-based species delimitation to our nuclear genetic data to test hypotheses of population structure. We also performed demographic analyses to test hypotheses relating to population divergence and gene flow. Collectively, our results support the existence of four distinct lineages within C. scutulatus, and genetically defined populations do not correspond with currently recognized subspecies ranges. Finally, we use approximate Bayesian computation to test hypotheses of divergence among multiple rattlesnake species groups distributed across the Continental Divide, and find evidence for co-divergence at this boundary during the mid-Pleistocene.


Asunto(s)
Crotalus/genética , Flujo Génico , Variación Genética , Animales , Secuencia de Bases , Teorema de Bayes , Núcleo Celular/genética , Crotalus/clasificación , ADN Mitocondrial/genética , Ecosistema , Genética de Población , México , Filogenia , Filogeografía , Factores de Tiempo , Estados Unidos
8.
Zootaxa ; 4138(2): 271-90, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27470764

RESUMEN

Middle America is one of the most biodiverse regions in the world, harboring an exceptional number of rare and endemic species. This is especially true of Middle American cloud forests, where montane specialists occupy restricted, high-elevation ranges making them attractive candidates for investigating historical biogeography and speciation. One such highland-restricted species, the black speckled palm-pitviper (Bothriechis nigroviridis), occupies the Central, Tilarán, and Talamanca Cordilleras in Costa Rica and Panama. In this study, we investigate the genetic and morphological variation among populations of B. nigroviridis by inferring a multilocus phylogeny (21 individuals) and analyzing meristic scale characters with a principal component analysis (64 individuals). We find B. nigroviridis sensu stricto to be composed of two deeply divergent lineages, one with a restricted range in the northern and central Cordillera Talamanca and the other ranging throughout the Central, Tilarán, and Talamanca Cordilleras. Furthermore, these two lineages are morphologically distinct, with previously unrecognized differences in several characters allowing us to name and diagnose a new species B. nubestris sp. nov. We also examine the genetic and morphological variation within B. nigroviridis and discuss biogeographic hypotheses that may have led to the diversification of Bothriechis lineages.


Asunto(s)
Viperidae/clasificación , Distribución Animal , Estructuras Animales/anatomía & histología , Estructuras Animales/crecimiento & desarrollo , Animales , Tamaño Corporal , Costa Rica , Ecosistema , Femenino , Masculino , Tamaño de los Órganos , Filogenia , Viperidae/anatomía & histología , Viperidae/genética , Viperidae/crecimiento & desarrollo
9.
Evolution ; 70(7): 1435-49, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27251954

RESUMEN

Strong spatial sorting of genetic variation in contiguous populations is often explained by local adaptation or secondary contact following allopatric divergence. A third explanation, spatial sorting by stochastic effects of range expansion, has been considered less often though theoretical models suggest it should be widespread, if ephemeral. In a study designed to delimit species within a clade of venomous coralsnakes, we identified an unusual pattern within the Texas coral snake (Micrurus tener): strong spatial sorting of divergent mitochondrial (mtDNA) lineages over a portion of its range, but weak sorting of these lineages elsewhere. We tested three alternative hypotheses to explain this pattern-local adaptation, secondary contact following allopatric divergence, and range expansion. Collectively, near panmixia of nuclear DNA, the signal of range expansion associated sampling drift, expansion origins in the Gulf Coast of Mexico, and species distribution modeling suggest that the spatial sorting of divergent mtDNA lineages within M. tener has resulted from genetic surfing of standing mtDNA variation-not local adaptation or allopatric divergence. Our findings highlight the potential for the stochastic effects of recent range expansion to mislead estimations of population divergence made from mtDNA, which may be exacerbated in systems with low vagility, ancestral mtDNA polymorphism, and male-biased dispersal.


Asunto(s)
ADN Mitocondrial/genética , Elapidae/genética , Flujo Génico , Haplotipos , Animales , Evolución Molecular , México , Filogenia , Estados Unidos
10.
Mol Phylogenet Evol ; 83: 213-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25534232

RESUMEN

We used mitochondrial DNA sequence data from 151 individuals to estimate population genetic structure across the range of the Western Diamondback Rattlesnake (Crotalus atrox), a widely distributed North American pit viper. We also tested hypotheses of population structure using double-digest restriction site associated DNA (ddRADseq) data, incorporating thousands of nuclear genome-wide SNPs from 42 individuals. We found strong mitochondrial support for a deep divergence between eastern and western C. atrox populations, and subsequent intermixing of these populations in the Inter-Pecos region of the United States and Mexico. Our nuclear RADseq data also identify these two distinct lineages of C. atrox, and provide evidence for nuclear admixture of eastern and western alleles across a broad geographic region. We identified contrasting patterns of mitochondrial and nuclear genetic variation across this genetic fusion zone that indicate partially restricted patterns of gene flow, which may be due to either pre- or post-zygotic isolating mechanisms. The failure of these two lineages to maintain complete genetic isolation, and evidence for partially-restricted gene flow, imply that these lineages were in the early stages of speciation prior to secondary contact.


Asunto(s)
Crotalus/clasificación , Flujo Génico , Especiación Genética , Filogenia , Animales , Teorema de Bayes , Núcleo Celular/genética , Crotalus/genética , ADN Mitocondrial/genética , Genética de Población , Haplotipos , México , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Densidad de Población , Aislamiento Reproductivo , Análisis de Secuencia de ADN , Estados Unidos
11.
Mol Ecol ; 24(1): 83-97, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25413968

RESUMEN

How does range expansion affect genetic diversity in species with different ecologies, and do different types of genetic markers lead to different conclusions? We addressed these questions by assessing the genetic consequences of postglacial range expansion using mitochondrial DNA (mtDNA) and nuclear restriction site-associated DNA (RAD) sequencing in two congeneric and codistributed rodents with different ecological characteristics: the desert kangaroo rat (Dipodomys deserti), a sand specialist, and the Merriam's kangaroo rat (Dipodomys merriami), a substrate generalist. For each species, we compared genetic variation between populations that retained stable distributions throughout glacial periods and those inferred to have expanded since the last glacial maximum. Our results suggest that expanded populations of both species experienced a loss of private mtDNA haplotypes and differentiation among populations, as well as a loss of nuclear single-nucleotide polymorphism (SNP) private alleles and polymorphic loci. However, only D. deserti experienced a loss of nucleotide diversity (both mtDNA and nuclear) and nuclear heterozygosity. For all indices of diversity and differentiation that showed reduced values in the expanded areas, D. deserti populations experienced a greater degree of loss than did D. merriami populations. Additionally, patterns of loss in genetic diversity in expanded populations were substantially less extreme (by two orders of magnitude in some cases) for nuclear SNPs in both species compared to that observed for mitochondrial data. Our results demonstrate that ecological characteristics may play a role in determining genetic variation associated with range expansions, yet mtDNA diversity loss is not necessarily accompanied by a matched magnitude of loss in nuclear diversity.


Asunto(s)
Dipodomys/genética , Ambiente , Genética de Población , Animales , California , Clima , ADN Mitocondrial/genética , Dipodomys/clasificación , Sitios Genéticos , Haplotipos , México , Modelos Biológicos , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
12.
Mol Phylogenet Evol ; 69(3): 524-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23916566

RESUMEN

The longtailed rattlesnakes of western Mexico represent an enigmatic group of poorly known venomous snake species: Crotalus ericsmithi, C. lannomi, and C. stejnegeri. In the 120 years since their discovery, fewer than twenty individuals have been deposited in natural history collections worldwide. These three species share similar morphological traits, including a particularly long tail that has been interpreted as either an ancestral condition among rattlesnakes or as derived within the longtailed group. An understanding of the phylogenetic distinctiveness and relationships among the longtailed rattlesnakes, and their relationships to other rattlesnake groups, has previously been hampered by a dearth of comparative material and tissues for collection of DNA sequence data. Facilitated by the recent availability of tissue samples from multiple individuals of each species, we estimate the phylogenetic relationships among the longtailed rattlesnakes and their placement among other rattlesnake groups, using DNA sequence data from three mitochondrial and three nuclear gene fragments. We explore phylogenetic signal in our data using Bayesian and maximum likelihood methods, species tree analyses and hypothesis testing. Our results strongly support the monophyly of longtailed rattlesnakes and suggest the three species diverged from each other during the mid to late Pliocene or early Pleistocene (~1.5-5.6 mya). Contrary to prevailing hypotheses, we find no evidence for an early or basal divergence of the longtailed clade within the rattlesnake tree, and instead estimate that it diverged relatively recently (~6.8 mya) from its sister lineage, composed of the diamondback rattlesnakes (C. atrox group) and the prairie rattlesnakes (C. viridis group). With our added sampling of lineages and identification of previously used problematic sequences, we provide a revised hypothesis for relationships among Crotalus species, yet underscore the need for future studies and new data to deliver a well-supported robust estimate of rattlesnake relationships.


Asunto(s)
Evolución Biológica , Crotalus/clasificación , Filogenia , Animales , Teorema de Bayes , Núcleo Celular/genética , Crotalus/genética , ADN Mitocondrial/genética , Funciones de Verosimilitud , México , Modelos Genéticos , Filogeografía , Análisis de Secuencia de ADN
13.
PLoS One ; 8(2): e56283, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23409165

RESUMEN

Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests--among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy.


Asunto(s)
Especies en Peligro de Extinción/estadística & datos numéricos , Evolución Molecular , Árboles/genética , Américas , Animales , Flujo Génico , Variación Genética , Filogeografía , Plantas/clasificación , Plantas/genética , Análisis de Secuencia de ADN , Análisis Espacio-Temporal , Árboles/clasificación
14.
Mol Ecol Resour ; 12(6): 1105-13, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22938699

RESUMEN

Studies of population genetics increasingly use next-generation DNA sequencing to identify microsatellite loci in nonmodel organisms. There are, however, relatively few studies that validate the feasibility of transitioning from marker development to experimental application across populations and species. North American coralsnakes of the Micrurus fulvius species complex occur in the United States and Mexico, and little is known about their population structure and phylogenetic relationships. This absence of information and population genetics markers is particularly concerning because they are highly venomous and have important implications on human health. To alleviate this problem in coralsnakes, we investigated the feasibility of using 454 shotgun sequences for microsatellite marker development. First, a genomic shotgun library from a single individual was sequenced (approximately 7.74 megabases; 26,831 reads) to identify potentially amplifiable microsatellite loci (PALs). We then hierarchically sampled 76 individuals from throughout the geographic distribution of the species complex and examined whether PALs were amplifiable and polymorphic. Approximately half of the loci tested were readily amplifiable from all individuals, and 80% of the loci tested for variation were variable and thus informative as population genetic markers. To evaluate the repetitive landscape characteristics across multiple snakes, we also compared microsatellite content between the coralsnake and two other previously sampled snakes, the venomous copperhead (Agkistrodon contortrix) and Burmese python (Python molurus).


Asunto(s)
Biota , Elapidae/clasificación , Elapidae/genética , Variación Genética , Repeticiones de Microsatélite , Animales , México , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Estados Unidos
15.
Mol Phylogenet Evol ; 42(1): 193-212, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16934495

RESUMEN

The western diamondback rattlesnake (Crotalus atrox) is a prominent member of North American desert and semi-arid ecosystems, and its importance extends from its impact on the region's ecology and imagery, to its medical relevance as a large deadly venomous snake. We used mtDNA sequences to identify population genetic structure and historical demographic patterns across the range of this species, and relate these to broader patterns of historical biogeography of desert and semi-arid regions of the southwestern USA and adjacent Mexico. We inferred a Late Pliocene divergence between peninsular and continental lineages of Crotalus, followed by an Early Mid Pleistocene divergence across the continental divide within C. atrox. Within desert regions (Sonoran and Chihuahuan Deserts, Southern Plains, and Tamaulipan Plain) we observed population structure indicating isolation of populations in multiple Pleistocene refugia on either side of the continental divide, which we attempt to identify. Evidence of post-glacial population growth and range expansion was inferred, particularly in populations east of the continental divide. We observed clear evidence of (probably recent) gene flow across the continental divide and secondary contact of haplotype lineages. This recent gene flow appears to be particularly strong in the West-to-East direction. Our results also suggest that Crotalus tortugensis (Tortuga Island rattlesnake) and a population of 'C. atrox' inhabiting Santa Cruz Island (in the Gulf of California) previously suggested to be an unnamed species, are in fact deeply phylogenetically nested within continental lineages of C. atrox. Accordingly, we suggest C. tortugensis and 'C. atrox' from Santa Cruz Island be placed in the synonymy of C. atrox.


Asunto(s)
Crotalus/genética , ADN Mitocondrial/genética , Filogenia , Animales , Arizona , California , Crotalus/clasificación , ADN Mitocondrial/química , Clima Desértico , Genética de Población , Geografía , Haplotipos , México , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Texas
16.
Mol Phylogenet Evol ; 37(3): 881-98, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16024260

RESUMEN

We analyzed the phylogeny of the Neotropical pitvipers within the Porthidium group (including intra-specific through inter-generic relationships) using 1.4 kb of DNA sequences from two mitochondrial protein-coding genes (ND4 and cyt-b). We investigated how Bayesian Markov chain Monte-Carlo (MCMC) phylogenetic hypotheses based on this 'mesoscale' dataset were affected by analysis under various complex models of nucleotide evolution that partition models across the dataset. We develop an approach, employing three statistics (Akaike weights, Bayes factors, and relative Bayes factors), for examining the performance of complex models in order to identify the best-fit model for data analysis. Our results suggest that: (1) model choice may have important practical effects on phylogenetic conclusions even for mesoscale datasets, (2) the use of a complex partitioned model did not produce widespread increases or decreases in nodal posterior probability support, and (3) most differences in resolution resulting from model choice were concentrated at deeper nodes. Our phylogenetic estimates of relationships among members of the Porthidium group (genera: Atropoides, Cerrophidion, and Porthidium) resolve the monophyly of the three genera. Bayesian MCMC results suggest that Cerrophidion and Porthidium form a clade that is the sister taxon to Atropoides. In addition to resolving the intra-specific relationships among a majority of Porthidium group taxa, our results highlight phylogeographic patterns across Middle and South America and suggest that each of the three genera may harbor undescribed species diversity.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Filogenia , Viperidae/genética , Animales , Secuencia de Bases , Teorema de Bayes , América Central , ADN Mitocondrial/genética , México , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Viperidae/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA