Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glia ; 72(1): 206-221, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37737058

RESUMEN

Microglia have been found to acquire unique region-dependent deleterious features with age and diseases that contribute to neuronal dysfunction and degeneration in the brain. However, it remains unknown whether microglia exhibit similar phenotypic heterogeneity in the spinal cord. Here, we performed a regional analysis of spinal cord microglia in 3-, 16-, 23-, and 30-month-old mice. Using light and electron microscopy, we discovered that spinal cord microglia acquire an increasingly activated phenotype during the course of aging regardless of regional location. However, aging causes microglia in the ventral but not dorsal horn to lose their spatial organization. Aged ventral horn microglia also aggregate around the somata of motor neurons and increase their contacts with motor synapses, which have been shown to be lost with age. These findings suggest that microglia may affect the ability of motor neurons to receive and relay motor commands during aging. To generate additional insights about aging spinal cord microglia, we performed RNA-sequencing on FACS-isolated microglia from 3-, 18-, 22-, and 29-month-old mice. We found that spinal cord microglia acquire a similar transcriptional identity as those in the brain during aging that includes altered expression of genes with roles in microglia-neuron interactions and inflammation. By 29 months of age, spinal cord microglia exhibit additional and unique transcriptional changes known and predicted to cause senescence and to alter lysosomal and ribosomal regulation. Altogether, this work provides the foundation to target microglia to ameliorate aged-related changes in the spinal cord, and particularly on the motor circuit.


Asunto(s)
Microglía , Neuronas Motoras , Ratones , Animales , Microglía/metabolismo , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Sinapsis/metabolismo , Inflamación/metabolismo
2.
JCI Insight ; 8(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154159

RESUMEN

Spinal motor neurons have been implicated in the loss of motor function that occurs with advancing age. However, the cellular and molecular mechanisms that impair the function of these neurons during aging remain unknown. Here, we show that motor neurons do not die in old female and male mice, rhesus monkeys, and humans. Instead, these neurons selectively and progressively shed excitatory synaptic inputs throughout the soma and dendritic arbor during aging. Thus, aged motor neurons contain a motor circuitry with a reduced ratio of excitatory to inhibitory synapses that may be responsible for the diminished ability to activate motor neurons to commence movements. An examination of the motor neuron translatome (ribosomal transcripts) in male and female mice reveals genes and molecular pathways with roles in glia-mediated synaptic pruning, inflammation, axonal regeneration, and oxidative stress that are upregulated in aged motor neurons. Some of these genes and pathways are also found altered in motor neurons affected with amyotrophic lateral sclerosis (ALS) and responding to axotomy, demonstrating that aged motor neurons are under significant stress. Our findings show mechanisms altered in aged motor neurons that could serve as therapeutic targets to preserve motor function during aging.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neuronas Motoras , Humanos , Ratones , Masculino , Femenino , Animales , Anciano , Neuronas Motoras/metabolismo , Envejecimiento/metabolismo , Esclerosis Amiotrófica Lateral/genética , Sinapsis/metabolismo , Primates
3.
Aging Cell ; 17(2)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29397579

RESUMEN

Motor function deteriorates with advancing age, increasing the risk of adverse health outcomes. While it is well established that skeletal muscles and neuromuscular junctions (NMJs) degenerate with increasing age, the effect of aging on α-motor neurons and their innervating synaptic inputs remains largely unknown. In this study, we examined the soma of α-motor neurons and innervating synaptic inputs in the spinal cord of aged rhesus monkeys and mice, two species with vastly different lifespans. We found that, in both species, α-motor neurons retain their soma size despite an accumulation of large amounts of cellular waste or lipofuscin. Interestingly, the lipofuscin profile varied considerably, indicating that α-motor neurons age at different rates. Although the rate of aging varies, α-motor neurons do not atrophy in old age. In fact, there is no difference in the number of motor axons populating ventral roots in old mice compared to adult mice. Moreover, the transcripts and proteins associated with α-motor neurons do not decrease in the spinal cord of old mice. However, in aged rhesus monkeys and mice, there were fewer cholinergic and glutamatergic synaptic inputs directly abutting α-motor neurons, evidence that aging causes α-motor neurons to shed synaptic inputs. Thus, the loss of synaptic inputs may contribute to age-related dysfunction of α-motor neurons. These findings broaden our understanding of the degeneration of the somatic motor system that precipitates motor dysfunction with advancing age.


Asunto(s)
Neuronas Motoras/metabolismo , Médula Espinal/fisiopatología , Adolescente , Adulto , Envejecimiento , Animales , Niño , Modelos Animales de Enfermedad , Haplorrinos , Humanos , Masculino , Ratones , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA