Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6261, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491131

RESUMEN

Terahertz imaging is unlocking unique capabilities for the analysis of cultural heritage artifacts. This paper uses terahertz time-domain imaging for the study of a gilded wooden artifact, providing a means to perform stratigraphic analysis, yielding information about the composition of the artifact, presence of certain materials identifiable through their THz spectral fingerprint, as well as alterations that have been performed over time. Due to the limited information that is available for many historic artifacts, the data that can be obtained through the presented technique can guide proper stewardship of the artifact, informing its long-term preservation.

2.
J Opt ; 26(1): 013001, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116399

RESUMEN

Optical sensors and sensing technologies are playing a more and more important role in our modern world. From micro-probes to large devices used in such diverse areas like medical diagnosis, defence, monitoring of industrial and environmental conditions, optics can be used in a variety of ways to achieve compact, low cost, stand-off sensing with extreme sensitivity and selectivity. Actually, the challenges to the design and functioning of an optical sensor for a particular application requires intimate knowledge of the optical, material, and environmental properties that can affect its performance. This roadmap on optical sensors addresses different technologies and application areas. It is constituted by twelve contributions authored by world-leading experts, providing insight into the current state-of-the-art and the challenges their respective fields face. Two articles address the area of optical fibre sensors, encompassing both conventional and specialty optical fibres. Several other articles are dedicated to laser-based sensors, micro- and nano-engineered sensors, whispering-gallery mode and plasmonic sensors. The use of optical sensors in chemical, biological and biomedical areas is discussed in some other papers. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed.

3.
Sci Rep ; 13(1): 20782, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012178

RESUMEN

As the need for higher data rates for communication increases, the terahertz (THz) band has drawn considerable attention. This spectral region promises a much wider bandwidth and the transmission of large amounts of data at high speeds. However, there are still challenges that need to be addressed before the THz telecommunications technology hits the consumer market. One of the recurring concerns is that THz radiation is greatly absorbed by atmospheric water-vapor. Although many studies have presented the attenuation of THz signals under different atmospheric conditions, these results analyze specific temperature or humidity values, leaving the need for a more comprehensive analysis over a wider range of climate conditions. In this work, we present the first study of the attenuation of THz radiation over a broad range of temperatures and humidity values. It is worth noticing that all of our measurements have been undertaken at atmospheric pressure unlike many previous studies where the pressure was not kept constant for various temperatures. Furthermore, we extend our analysis beyond the impact of absolute humidity on the bit error rate in THz communications. We also discuss the refractivity of the atmosphere, examining its variations across different temperatures and humidity levels. THz propagation is studied using two different measurement systems, a long-path THz time-domain spectrometer as well as a quasi-optic setup with vector network analyze. We also compare the results with the ITU-R P.676-13 propagation model. We conclude that the attenuation at the absorption peaks increases linearly with water content and has no dependence on the temperature, while the refractive index, away from absorption lines, namely at 300 GHz shows a sub-linear increase with humidity.

4.
Pharmaceutics ; 15(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513973

RESUMEN

(1) Background: Amorphous drug systems are an intensively studied approach to overcome the insufficient bioavailability of poorly soluble drugs. Here, paper tablets were studied, which were made from cellulose-based paper matrices loaded with norfloxacin. Moreover, wet granulation was introduced as an additional processing step for improving the flowability of the solids, which is necessary when considering production on an industrial scale. (2) Methods: The possible impact of the wet granulation on the crystallinity of norfloxacin was studied by examining granulated and non-granulated samples. Crystallinity investigations were performed using X-ray powder diffraction (XRD) and terahertz time-domain spectroscopy (THz TDS). (3) Results: THz TDS allowed for a more straightforward crystallinity assessment than XRD. Moreover, using THz TDS, it was possible to detect minor changes in the crystallinity of the API after the granulation, whereas this was not possible with the XRD analysis. (4) Conclusions: THz TDS results indicate a partial crystallization of norfloxacin due to the wet granulation. Depending on the formulation, THz TDS can serve as a beneficial and advantageous tool to determine the crystallinity of an API.

5.
Biomed Opt Express ; 14(4): 1472-1479, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078026

RESUMEN

Terahertz technology has demonstrated enormous potential for the analysis of biological systems and the diagnosis of some medical conditions, given its high sensitivity to detect water content. In previously published papers, effective medium theories are used to extract the water content from the terahertz measurements. When the dielectric functions of water and dehydrated bio-material are well known, the volumetric fraction of water can be left as the only free parameter in those effective medium theory models. While water complex permittivity is very well known, the dielectric functions of dehydrated tissues are normally measured for each individual application. In previous studies, it has been traditionally assumed that, unlike water, the dielectric function of the dehydrated tissues is temperature independent, measuring it only at room temperature. Yet, this is an aspect that has not been discussed and that is relevant in order to get THz technology closer to clinical and in-the-field applications. In this work, we present the characterization of the complex permittivity of dehydrated tissues; each studied at temperatures ranging from 20°C to 36.5°C. We studied samples of different organism classifications to have a wider confirmation of the results. We find that, in each case, the dielectric function changes of dehydrated tissues caused by temperature are smaller than for water across the same temperature interval. Yet, the changes in the dielectric function of the dehydrated tissue are not negligible and should, in many cases, be taken into account for the processing of terahertz signals that interact with biological tissues. While this study gives a first introduction into the probable relevancy of temperature-dependent optical behavior of biological samples, this work only focuses on the experimental proof for this relationship and will, therefore, not give a deeper analysis of how the underlying models have to be modified.

6.
Int J Pharm ; 635: 122721, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36781082

RESUMEN

Techniques to maintain drugs amorphous that would otherwise crystallize is an extensively studied approach to enhance the dissolution characteristics of poorly soluble drugs. However, their performance is limited by the low physical stability of the amorphous phase which can lead to recrystallization which in turn results in decreased solubility and bioavailability of the drug. In this work, the crystallinity of nifedipine loaded into a cellulose-based paper matrix, so called smartFilms, was determined by terahertz time-domain spectroscopy. By adding polyvinylpyrrolidone as an extra carrier, the capability of smartFilms to transfer nifedipine into its amorphous state improved. Moreover, the performance of the formulation to inhibit recrystallization of the amorphous drug over a period of six months increased. For formulations containing up to 10 w% drug loading and additional polyvinylpyrrolidone (nifedipine/polyvinylpyrrolidone: 4:1 mass ratio), nifedipine was found to be completely amorphous after six months of storage.


Asunto(s)
Nifedipino , Povidona , Povidona/química , Nifedipino/química , Cristalización/métodos , Solubilidad , Comprimidos , Estabilidad de Medicamentos
7.
Sci Rep ; 12(1): 21038, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470910

RESUMEN

Over time, artworks often sustain paint layer separation and air gaps within their internal structure due to storage conditions and past restoration efforts. Because of this, paint layer consolidation interventions are an essential activity for art conservators. However, it is difficult to determine the exact location and the extent of layer separation on a piece of art in a non-invasive way, and even more difficult to evaluate the success of a consolidation intervention. In this work, a fifteenth-century wood panel painting was analyzed using terahertz time-domain imaging before and after it was consolidated. Using the terahertz data, it was possible to determine the areas on the artwork in need of consolidation and aid the intervention. The analysis of the after data allowed for the control and determination of the success of the consolidation effort in a non-destructive manner.

8.
Opt Lett ; 47(13): 3283-3286, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776606

RESUMEN

Terahertz (THz) radiation has shown enormous potential for non-destructive inspection in many contexts. Here, we present a method for imaging defects in chocolate bars that can be extended to many other materials. Our method requires only a continuous wave (CW) monochromatic source and detector at relatively low frequencies (280 GHz) corresponding to a relatively long wavelength of 1.1 mm. These components are used to construct a common-path configuration enabling the capturing of several images of THz radiation diffracted by the test object at different axial depths. The captured diffraction-rich images are used to constrain the associated phase retrieval problem enabling full access to the wave field, i.e., real amplitude and phase distributions. This allows full-field diffraction-limited phase-contrast imaging. Thus, we experimentally demonstrate the possibility of identifying contaminant particles with dimensions comparable to the wavelength.


Asunto(s)
Chocolate , Microscopía de Contraste de Fase , Radiación Terahertz
9.
Sci Rep ; 12(1): 10971, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768465

RESUMEN

One of the key distinctions between legacy low-frequency wireless systems and future THz wireless transmissions is that THz links will require high directionality, to overcome the large free-space path loss. Because of this directionality, optical phenomena become increasingly important as design considerations. A key example lies in the strong dependence of angular radiation patterns on the transmission frequency, which is manifested in many different situations including common diffraction patterns and the emission from leaky-wave apertures. As a result of this effect, the spectral bandwidth at a receiver is nonlinearly dependent on the receiver's angular position and distance from the transmitter. In this work, we explore the implications of this type of effect by incorporating either a diffraction grating or a leaky wave antenna into a communication link. These general considerations will have significant implications for the robustness of data transmissions at high frequencies.

10.
Sci Rep ; 12(1): 6099, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35414681

RESUMEN

We use terahertz (THz) time-domain spectroscopy (TDS) to assess the crystalline state of indomethacin (IM) when loaded in smartFilms®. We found that smartFilms favour the amorphous IM (A-IM) for low loading concentrations. For higher concentrations, IM recrystallizes in its [Formula: see text]- crystalline form and the amount of A-IM in the smartFilms reduces. Both, [Formula: see text]- and A-IM are preferred over the more common [Formula: see text]- crystalline form, as they exhibit better water solubility, which can increase the oral bioavailability of the drug.


Asunto(s)
Indometacina , Espectroscopía de Terahertz , Análisis Espectral , Comprimidos , Espectroscopía de Terahertz/métodos
11.
Opt Express ; 30(5): 7068-7081, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299478

RESUMEN

In this contribution, we demonstrate the first referenceless measurement of a THz wavefront by means of shear-interferometry. The technique makes use of a transmissive Ronchi phase grating to generate the shear. We fabricated the grating by mechanical machining of high-density polyethylene. At the camera plane, the +1 and -1 diffraction orders are coherently superimposed, generating an interferogram. We can adjust the shear by selecting the period of the grating and the focal length of the imaging system. We can also alter the direction of the shear by rotating the grating. A gradient-based iterative algorithm is used to reconstruct the wavefront from a set of shear interferograms. The results presented in this study demonstrate the first step towards wavefield sensing in the terahertz band without using a reference wave.

12.
Sci Rep ; 12(1): 3110, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210481

RESUMEN

Diabetic foot syndrome, a long term consequence of Diabetes Mellitus, is the most common cause of non-traumatic amputations. Around 8% of the world population suffers from diabetes, 15% of diabetic patients present a diabetic foot ulcer which leads to amputation in 2.5% of the cases. There is no objective method for the early diagnosis and prevention of the syndrome and its consequences. We test terahertz imaging, which is capable of mapping the cutaneous hydration, for the evaluation of the diabetic foot deterioration as an early diagnostic test as well as ulcers prevention and tracking tool. Furthermore, the analysis of our terahertz measurements combined with neurological and vascular assessment of the patients indicates that the dehydration is mainly related to the peripheral neuropathy without a significant vascular cause.


Asunto(s)
Pie Diabético/diagnóstico por imagen , Nefropatías Diabéticas/fisiopatología , Imágen por Terahertz/métodos , Adulto , Anciano , Anciano de 80 o más Años , Deshidratación/fisiopatología , Pie Diabético/fisiopatología , Nefropatías Diabéticas/diagnóstico por imagen , Femenino , Humanos , Masculino , México , Persona de Mediana Edad , Enfermedades del Sistema Nervioso Periférico , Factores de Riesgo , Piel/metabolismo
13.
Opt Express ; 28(21): 30943-30951, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115083

RESUMEN

Currently a significant fraction of the world energy is still produced from the combustion of mineral coal. The extraction of coal from mines is a relatively complex and dangerous activity that still requires the intervention of human miners, and therefore in order to minimize risks, automation of the coal mining process is desirable. An aspect that is still under investigation is potential techniques that can recognize on-line if the mineral being extracted from the mine is coal or if it is the surrounding rock. In this contribution we present the proof of concept of a method that has potential for recognition of the extraction debris from mining based on their terahertz transmission.

14.
Opt Express ; 28(15): 21737-21744, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752446

RESUMEN

In this article, we propose variable-period diffraction gratings for terahertz frequencies. The design, fabrication and characterization of such devices are presented. Our measurements show the possibility to actively shift of the deflection angle for each frequency using this device. We also demonstrated that, when driven by a speaker, these variable gratings can be used for active beam steering with potential application in terahertz communications.

15.
Appl Opt ; 59(13): D6-D11, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32400617

RESUMEN

We study the use of three effective medium theory models, namely Maxwell-Garnett, Bruggeman, and Landau-Lifshitz-Looyenga, for the dielectric response of biological tissue in the terahertz band of the electromagnetic spectrum. In order to accomplish our objectives, we performed measurements on water-dehydrated basil binary mixtures encompassing the entire concentration range, and we further analyze the dielectric function with the models. Our results indicate that the Landau-Lifshitz-Looyenga and Bruggeman models provide marginally better fit to the experimentally measured dielectric function in the terahertz band. We further discuss the biological relevance of the models in the context of our experimental data based on their fundamental assumptions.


Asunto(s)
Espectroscopía Dieléctrica/métodos , Ocimum basilicum/química , Hojas de la Planta/química , Espectroscopía de Terahertz/métodos , Fenómenos Electromagnéticos , Modelos Químicos , Modelos Teóricos , Agua
16.
Sci Rep ; 10(1): 1404, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996722

RESUMEN

While terahertz imaging has been used before for the determination of water content in vegetative tissue, most studies have either presented measurements of the temporal evolution of water content at a single-point of the plant or have presented two-dimensional images of leaves, demonstrating the potential of the technique, but relatively little of such information has been used to support biologically relevant conclusions. In this article we introduce terahertz time-domain spectroscopic imaging as a technique for the determination of the three-dimensional distribution of water in succulent plant tissues. We present the first three-dimensional water mapping of an agave leaf, which demonstrates an unprecedented capability to study the water retention mechanisms within succulent plants. We found that agave leaves are composed of a low-hydration outer tissue layer, defined by the outermost layer of vascular tissue that surrounds a high-hydration tissue, the carbohydrate rich hydrenchyma. The findings are supported by histological images and the correlation between the water content and carbohydrate presence is consistent with recently published findings of a remarkably large hydration shell associated with agave fructans.


Asunto(s)
Agave/química , Imagenología Tridimensional , Hojas de la Planta/química , Imágen por Terahertz/métodos , Agua/análisis , Aclimatación , Agave/metabolismo , Sequías , Fructanos/metabolismo , Hojas de la Planta/metabolismo , Espectroscopía de Terahertz/métodos , Agua/metabolismo
17.
Appl Opt ; 58(24): 6581-6585, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31503585

RESUMEN

We use terahertz time-domain spectroscopic (THz-TDS) imaging for the evaluation of moisturizing-substances effects over stratum corneum (SC) samples. Excised SC of porcine skin is used as an in vitro skin model. We evaluate the interaction of SC samples with glycerine and lanolin, two substances commonly used in moisturizers. In order to do this, THz images of SC samples after deposition of the substances are scanned. The response of the SC samples to a commercial moisturizer is also analyzed. Our results show that THz imaging is capable of sensing the distinct interaction mechanisms of the substances with the SC samples. The occlusive nature of lanolin, the hyperosmotic behavior of glycerine, and the moisturizing effect of the commercial moisturizer can be observed using THz-TDS imaging.

18.
Food Chem ; 291: 94-100, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31006476

RESUMEN

We present a study of the hydration shells of some carbohydrate polymers of commercial and biological importance, namely, agave fructans, inulin, and maltodextrin, employing terahertz time-domain spectroscopy and differential scanning calorimetry. We observe that the hydration numbers calculated using terahertz spectroscopy are marginally higher than those of the calorimetric values. We attribute this discrepancy to the definition of hydration number, which in a way correlates with the physical process used to quantify it. The aqueous solutions show a non-proportional increase in the absorption coefficient and the hydration number, with a decrease in the carbohydrate concentration. We demonstrate that this behavior is consistent with the "chaotropic" or "structure breaking" model of the hydration shell around the carbohydrates. In addition, the study reveals that agave fructans and inulin have good hydration ability. Given the high glass transition temperature and good hydration ability, these carbohydrates may behave as good bio-protectants and hydrating additives for food and beverages.


Asunto(s)
Carbohidratos/química , Polímeros/química , Agave/química , Agave/metabolismo , Rastreo Diferencial de Calorimetría , Fructanos/análisis , Fructanos/química , Luz , Polisacáridos/química , Espectroscopía de Terahertz
19.
Opt Express ; 25(22): 27370-27385, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29092211

RESUMEN

We use terahertz transmission through limestone sedimentary rock samples to assess the macro and micro porosity. We exploit the notable water absorption in the terahertz spectrum to interact with the pores that are two orders of magnitude smaller (<1µm) than the terahertz wavelength. Terahertz water sensitivity provides us with the dehydration profile of the rock samples. The results show that there is a linear correlation between such a profile and the ratio of micro to macro porosity of the rock. Furthermore, this study estimates the absolute value of total porosity based on optical diffusion theory. We compare our results with that of mercury injection capillary pressure as a benchmark to confirm our analytic framework. The porosimetry method presented here sets a foundation for a new generation of less invasive porosimetry methods with higher penetration depth based on lower frequency (f<10THz) scattering and absorption. The technique has applications in geological studies and in other industries without the need for hazardous mercury or ionizing radiation.

20.
J Opt ; 19(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29375751

RESUMEN

Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both conventional, specialty and photonic crystal fibers. Several other sections are dedicated to micro- and nano-engineered sensors, including whispering-gallery mode and plasmonic sensors. The uses of optical sensors in chemical, biological and biomedical areas are described in other sections. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed. Advances in science and technology required to meet challenges faced in each of these areas are addressed, together with suggestions on how the field could evolve in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...