Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol In Vitro ; 65: 104814, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32112803

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) is a critical health issue worldwide. The high rate of liver and lung metastasis associated with CRC creates a significant barrier to effective and efficient therapy. Tumour cells, including CRC cells, have metabolic alterations, such as high levels of glycolytic activity, increased cell proliferation and invasiveness, and chemo- and radio-resistance. However, the abnormally elevated mitochondrial transmembrane potential of these cells also provides an opportunity to develop drugs that selectively target the mitochondrial functions of tumour cells. METHODS: In this work, we used a new batch of benzoic acid esters with cytotoxic activities attached to the triphenylphosphonium group as a vehicle to target tumour mitochondria and improve their activity. We evaluated the cytotoxicity, selectivity, and mechanism of action of these derivatives, including the effects on energy stress-induced apoptosis and metabolic behaviour in the human CRC cell lines HCT-15 and COLO-205. RESULTS: The benzoic acid derivatives selectively targeted the tumour cells with high potency and efficacy. The derivatives induced the uncoupling of the oxidative phosphorylation system, decreased the transmembrane potential, and reduced ATP levels while increasing AMPK activation, thereby triggering tumour cell apoptosis in both tumour cell lines tested. CONCLUSION: The benzoic acid derivatives studied here are promising candidates for assessing in vivo models of CRC, despite the diverse metabolic characteristics of these tumour cells.


Asunto(s)
Antineoplásicos/farmacología , Benzoatos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Adenosina Trifosfato/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Oxígeno/metabolismo
2.
Cells ; 9(2)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053908

RESUMEN

The mitochondrion has emerged as a promising therapeutic target for novel cancer treatments because of its essential role in tumorigenesis and resistance to chemotherapy. Previously, we described a natural compound, 10-((2,5-dihydroxybenzoyl)oxy)decyl) triphenylphosphonium bromide (GA-TPP+C10), with a hydroquinone scaffold that selectively targets the mitochondria of breast cancer (BC) cells by binding to the triphenylphosphonium group as a chemical chaperone; however, the mechanism of action remains unclear. In this work, we showed that GA-TPP+C10 causes time-dependent complex inhibition of the mitochondrial bioenergetics of BC cells, characterized by (1) an initial phase of mitochondrial uptake with an uncoupling effect of oxidative phosphorylation, as previously reported, (2) inhibition of Complex I-dependent respiration, and (3) a late phase of mitochondrial accumulation with inhibition of α-ketoglutarate dehydrogenase complex (αKGDHC) activity. These events led to cell cycle arrest in the G1 phase and cell death at 24 and 48 h of exposure, and the cells were rescued by the addition of the cell-penetrating metabolic intermediates l-aspartic acid ß-methyl ester (mAsp) and dimethyl α-ketoglutarate (dm-KG). In addition, this unexpected blocking of mitochondrial function triggered metabolic remodeling toward glycolysis, AMPK activation, increased expression of proliferator-activated receptor gamma coactivator 1-alpha (pgc1α) and electron transport chain (ETC) component-related genes encoded by mitochondrial DNA and downregulation of the uncoupling proteins ucp3 and ucp4, suggesting an AMPK-dependent prosurvival adaptive response in cancer cells. Consistent with this finding, we showed that inhibition of mitochondrial translation with doxycycline, a broad-spectrum antibiotic that inhibits the 28 S subunit of the mitochondrial ribosome, in the presence of GA-TPP+C10 significantly reduces the mt-CO1 and VDAC protein levels and the FCCP-stimulated maximal electron flux and promotes selective and synergistic cytotoxic effects on BC cells at 24 h of treatment. Based on our results, we propose that this combined strategy based on blockage of the adaptive response induced by mitochondrial bioenergetic inhibition may have therapeutic relevance in BC.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Quinasas de la Proteína-Quinasa Activada por el AMP , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Doxiciclina/farmacología , Sinergismo Farmacológico , Femenino , Gentisatos/química , Gentisatos/farmacología , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Humanos , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Complejo Cetoglutarato Deshidrogenasa/genética , Mitocondrias/patología , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Proteínas Quinasas/genética , Ribosomas/efectos de los fármacos
3.
RSC Med Chem ; 11(10): 1210-1225, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479625

RESUMEN

Continuous flow chemistry was used for the synthesis of a series of delocalized lipophilic triphenylphosphonium cations (DLCs) linked by means of an ester functional group to several hydroxylated benzoic acid derivatives and evaluated in terms of both reaction time and selectivity. The synthesized compounds showed cytotoxic activity and selectivity in head and neck tumor cell lines. The mechanism of action of the molecules involved a mitochondrial uncoupling effect and a decrease in both intracellular ATP production and apoptosis induction.

4.
J Mater Chem B ; 8(1): 88-99, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31769463

RESUMEN

We synthesized an anthracene derivative with solvatochromic properties to be used as a molecular probe for membrane dynamics and supramolecular organization. A nine carbon atom acyl chain and a dimethylamino substitution were introduced at positions 2 and 6 of the anthracene ring, respectively. This derivative, 2-nonanoyl-6-(dimethylamino)anthracene (termed CAPRYDAA), is a molecular probe designed to mimic the well-known membrane probe LAURDAN's location and response in the lipid membranes. Due to the larger distance between the electron donor and acceptor groups, its absorption and emission bands are red-shifted according to the polarity of the media. The photophysical behavior of CAPRYDAA was measured in homogeneous media, synthetic bilayer and cells, both in a cuvette and in a fluorescence microscope, using one and two-photon excitation. Our results show a comparable physicochemical behavior of CAPRYDAA with LAURDAN, but with the advantage of using visible light (488 nm) as an excitation source. CAPRYDAA was also excitable by two-photon laser sources, making it easy to combine CAPRYDAA with either blue or red emission probes. In GUVs or cells, CAPRYDAA can discriminate the lipid phases and liquid-liquid phase heterogeneity. This new membrane probe shows the bathochromic properties of the PRODAN-based probes designed by Weber, overcoming the need for UV or two-photon excitation and facilitating the studies on the membrane properties using regular confocal microscopes.


Asunto(s)
2-Naftilamina/análogos & derivados , Antracenos/química , Membrana Celular/química , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Espectrometría de Fluorescencia/métodos , Animales , Membrana Celular/ultraestructura , Lípidos de la Membrana/análisis , Ratones , Células 3T3 NIH
5.
Front Pharmacol ; 10: 157, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873030

RESUMEN

The entactogen MDMA (3,4-methylenedioxy-methamphetamine, "Ecstasy") exerts its psychotropic effects acting primarily as a substrate of the serotonin transporter (SERT) to induce a non-exocytotic release of serotonin. Nevertheless, the roles of specific positions of the aromatic ring of MDMA associated with the modulation of typical entactogenic effects, using analogs derived from the MDMA template, are still not fully understood. Among many possibilities, aromatic halogenation of the phenylalkylamine moiety may favor distribution to the brain due to increased lipophilicity, and sometimes renders psychotropic substances of high affinity for their molecular targets and high potency in humans. In the present work, a new MDMA analog brominated at C(2) of the aromatic ring (2-Br-4,5-MDMA) has been synthesized and pharmacologically characterized in vitro and in vivo. First, binding competition experiments against the SERT-blocker citalopram were carried out in human platelets and compared with MDMA. Besides, its effects on platelet aggregation were performed in platelet enriched human plasma using collagen as aggregation inductor. Second, as platelets are considered an appropriate peripheral model for estimating central serotonin availability, the functional effects of 2-Br-4,5-MDMA and MDMA on ATP release during human platelet aggregation were evaluated. The results obtained showed that 2-Br-4,5-MDMA exhibits higher affinity for SERT than MDMA and fully abolishes both platelet aggregation and ATP release, resembling the pharmacological profile of citalopram. Subsequent in vivo evaluation in rats at three dose levels showed that 2-Br-4,5-MDMA lacks all key MDMA-like behavioral responses in rats, including hyperlocomotion, enhanced active avoidance conditioning responses and increased social interaction. Taken together, the results obtained are consistent with the notion that 2-Br-4,5-MDMA should not be expected to be an MDMA-like substrate of SERT, indicating that aromatic bromination at C(2) modulates the pharmacodynamic properties of the substrate MDMA, yielding a citalopram-like compound.

6.
Toxicol In Vitro ; 54: 375-390, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30389605

RESUMEN

1,4-Naphthoquinone derivatives have been widely documented with regard to their biological properties, and particularly their anticancer activities. In the 9,10-anthraquinone family, aza-annulation involving one of the carbonyl oxygen atoms has afforded more potent, possibly less toxic analogues. We recently carried out different modifications on the naphthoquinone skeleton to generate 3-chloro-2-amino- and 3-chloro-2-(N-acetamido)-1,4-naphthoquinone and 3,4-dihydrobenzo[f]quinoxalin-6(2H)-one derivatives. These three series of compounds were now tested against normal human fibroblasts and six human cancer cell lines. Some of the dihydrobenzoquinoxalinone derivatives were not only more potent than their 1,4-naphthoquinone counterparts, but also exhibited 10- to 14-fold selectivity between bladder carcinoma and normal cells and were equipotent with the non-selective reference drug used (etoposide). The fusion of an additional azaheterocycle to the 1,4-naphthoquinone nucleus modulates both the activity, selectivity and mechanism of action of the compounds. The electrochemical properties of selected compounds were evaluated in an attempt to correlate them with cytotoxic activity and mechanism of action. Finally, 3D-QSAR CoMFA and CoMSIA models were built on the AGS, J82, and HL-60 cell lines. The best models had values of r2pred = 0.815; 0.823 and 0.925. The main structural relationships found, suggest that acetylation and alkylation of the amino group with large groups would be beneficial for cytotoxic activity.


Asunto(s)
Antineoplásicos/farmacología , Naftoquinonas/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Humanos , Naftoquinonas/química , Relación Estructura-Actividad Cuantitativa
7.
Toxicol Appl Pharmacol ; 329: 334-346, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28647477

RESUMEN

We previously demonstrated that alkyl gallates coupled to triphenylphosphine have a selective and efficient antiproliferative effect by inducing mitochondrial uncoupling in vitro due to the increased mitochondrial transmembrane potential of tumor cells. Therefore, in this work, the in vivo antitumor activities of alkyl gallate triphenylphosphonium derivatives (TPP+C8, TPP+C10 and TPP+C12) were evaluated in a syngeneic murine model of breast cancer. We found that TPP+C10 increased the cytosolic ADP/ATP ratio and significantly increased the AMP levels in a concentration-dependent manner in TA3/Ha murine mammary adenocarcinoma cells. Interestingly, TPP+C10 induced a decrease in the levels of cellular proliferation markers and promoted caspase-3 activation in tumor-bearing mice. Additionally, TPP+C10 inhibited tumor growth in the syngeneic mouse model. Importantly, 30days of intraperitoneal (i.p.) administration of the combination of TPP+C10 (10mg/kg/48h) and the antibiotic doxycycline (10mg/kg/24h) completely eliminated the subcutaneous tumor burden in mice (n=6), without any relapses at 60days post-treatment. This enhancement of the individual activities of TPP+C10 and doxycycline is due to the uncoupling of oxidative phosphorylation by TPP+C10 and the inhibition of mitochondrial biogenesis by doxycycline, as demonstrated by loss of mitochondrial mass and overexpression of PGC1-α as an adaptive response. Moreover, i.p. administration of TPP+C10 (10mg/kg/24h) to healthy mice did not produce toxicity or damage in organs important for drug metabolism and excretion, as indicated by hematological, biochemical and histological assessments. These findings suggest that the combination of TPP+C10 with doxycycline is a valuable candidate therapy for breast cancer management.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Neoplasias de la Mama Masculina/tratamiento farmacológico , Ácido Gálico/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenosina Trifosfato/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama Masculina/genética , Neoplasias de la Mama Masculina/metabolismo , Neoplasias de la Mama Masculina/patología , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxiciclina/farmacología , Ácido Gálico/análogos & derivados , Masculino , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Biogénesis de Organelos , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Carga Tumoral/efectos de los fármacos
8.
Toxicol Appl Pharmacol ; 309: 2-14, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27554043

RESUMEN

Mitochondrion is an accepted molecular target in cancer treatment since it exhibits a higher transmembrane potential in cancer cells, making it susceptible to be targeted by lipophilic-delocalized cations of triphenylphosphonium (TPP(+)). Thus, we evaluated five TPP(+)-linked decyl polyhydroxybenzoates as potential cytotoxic agents in several human breast cancer cell lines that differ in estrogen receptor and HER2/neu expression, and in metabolic profile. Results showed that all cell lines tested were sensitive to the cytotoxic action of these compounds. The mechanism underlying the cytotoxicity would be triggered by their weak uncoupling effect on the oxidative phosphorylation system, while having a wider and safer therapeutic range than other uncouplers and a significant lowering in transmembrane potential. Noteworthy, while the TPP(+)-derivatives alone led to almost negligible losses of ATP, when these were added in the presence of an AMP-activated protein kinase inhibitor, the levels of ATP fell greatly. Overall, data presented suggest that decyl polyhydroxybenzoates-TPP(+) and its derivatives warrant future investigation as potential anti-tumor agents.


Asunto(s)
Neoplasias de la Mama/patología , Hidroxibenzoatos/farmacología , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/química , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Humanos , Hidroxibenzoatos/química , Concentración 50 Inhibidora , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/fisiología , Oxígeno/metabolismo
10.
PLoS One ; 10(8): e0136852, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26317199

RESUMEN

disease is one of the most neglected tropical diseases in the world, affecting nearly 15 million people, primarily in Latin America. Only two drugs are used for the treatment of this disease, nifurtimox and benznidazole. These drugs have limited efficacy and frequently induce adverse effects, limiting their usefulness. Consequently, new drugs must be found. In this study, we demonstrated the in vitro trypanocidal effects of a series of four gallic acid derivatives characterized by a gallate group linked to a triphenylphosphonium (TPP(+)) moiety (a delocalized cation) via a hydrocarbon chain of 8, 10, 11, or 12 atoms (TPP(+)-C8, TPP(+)-C10, TPP(+)-C11, and TPP(+)-C12, respectively). We analyzed parasite viability in isolated parasites (by MTT reduction and flow cytometry) and infected mammalian cells using T. cruzi Y strain trypomastigotes. Among the four derivatives, TPP(+)-C10 and TPP(+)-C12 were the most potent in both models, with EC50 values (in isolated parasites) of 1.0 ± 0.6 and 1.0 ± 0.7 µM, respectively, and were significantly more potent than nifurtimox (EC50 = 4.1 ± 0.6 µM). At 1 µM, TPP(+)-C10 and TPP(+)-C12 induced markers of cell death, such as phosphatidylserine exposure and propidium iodide permeabilization. In addition, at 1 µM, TPP(+)-C10 and TPP(+)-C12 significantly decreased the number of intracellular amastigotes (TPP(+)-C10: 24.3%, TPP(+)-C12: 19.0% of control measurements, as measured by DAPI staining) and the parasite's DNA load (C10: 10%, C12: 13% of control measurements, as measured by qPCR). Based on the previous mode of action described for these compounds in cancer cells, we explored their mitochondrial effects in isolated trypomastigotes. TPP(+)-C10 and TPP(+)-C12 were the most potent compounds, significantly altering mitochondrial membrane potential at 1 µM (measured by JC-1 fluorescence) and inducing mitochondrial transition pore opening at 5 µM. Taken together, these results indicate that the TPP(+)-C10 and TPP(+)-C12 derivatives of gallic acid are promising trypanocidal agents with mitochondrial activity.


Asunto(s)
Ácido Gálico/farmacología , Macrófagos/parasitología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/aislamiento & purificación , Animales , Línea Celular , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Chlorocebus aethiops , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria/métodos , Trypanosoma cruzi/metabolismo , Células Vero
11.
Biochem Biophys Res Commun ; 463(4): 787-92, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26051278

RESUMEN

Abundant evidence indicates that iron accumulation, oxidative damage and mitochondrial dysfunction are common features of Huntington's disease, Parkinson's disease, Friedreich's ataxia and a group of disorders known as Neurodegeneration with Brain Iron Accumulation. In this study, we evaluated the effectiveness of two novel 8-OH-quinoline-based iron chelators, Q1 and Q4, to decrease mitochondrial iron accumulation and oxidative damage in cellular and animal models of PD. We found that at sub-micromolar concentrations, Q1 selectively decreased the mitochondrial iron pool and was extremely effective in protecting against rotenone-induced oxidative damage and death. Q4, in turn, preferentially chelated the cytoplasmic iron pool and presented a decreased capacity to protect against rotenone-induced oxidative damage and death. Oral administration of Q1 to mice protected substantia nigra pars compacta neurons against oxidative damage and MPTP-induced death. Taken together, our results support the concept that oral administration of Q1 is a promising therapeutic strategy for the treatment of NBIA.


Asunto(s)
Muerte Celular/efectos de los fármacos , Hidroxiquinolinas/farmacología , Quelantes del Hierro/farmacología , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Línea Celular Tumoral , Humanos , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neuronas/citología , Rotenona/farmacología
12.
J Med Chem ; 57(6): 2440-54, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24568614

RESUMEN

Tumor cells principally exhibit increased mitochondrial transmembrane potential (ΔΨ(m)) and altered metabolic pathways. The therapeutic targeting and delivery of anticancer drugs to the mitochondria might improve treatment efficacy. Gallic acid exhibits a variety of biological activities, and its ester derivatives can induce mitochondrial dysfunction. Four alkyl gallate triphenylphosphonium lipophilic cations were synthesized, each differing in the size of the linker chain at the cationic moiety. These derivatives were selectively cytotoxic toward tumor cells. The better compound (TPP(+)C10) contained 10 carbon atoms within the linker chain and exhibited an IC50 value of approximately 0.4-1.6 µM for tumor cells and a selectivity index of approximately 17-fold for tumor compared with normal cells. Consequently, its antiproliferative effect was also assessed in vivo. The oxygen consumption rate and NAD(P)H oxidation levels increased in the tumor cell lines (uncoupling effect), resulting in a ΔΨ(m) decrease and a consequent decrease in intracellular ATP levels. Moreover, TPP(+)C10 significantly inhibited the growth of TA3/Ha tumors in mice. According to these results, the antineoplastic activity and safety of TPP(+)C10 warrant further comprehensive evaluation.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Ácido Gálico/análogos & derivados , Ácido Gálico/síntesis química , Adenosina Trifosfato/metabolismo , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/efectos de los fármacos , Inhibidores de Caspasas/síntesis química , Inhibidores de Caspasas/farmacología , Cationes/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ácido Gálico/farmacología , Humanos , L-Lactato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Dilatación Mitocondrial/efectos de los fármacos , NADP/metabolismo , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Reproducibilidad de los Resultados , Desacopladores/síntesis química , Desacopladores/farmacología
13.
J Hazard Mater ; 261: 602-13, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23995557

RESUMEN

Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered.


Asunto(s)
Diurona/química , Herbicidas/química , Modelos Teóricos , Contaminantes del Suelo/química , Adsorción , Cinética , Erupciones Volcánicas
14.
Eur J Med Chem ; 62: 688-92, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23454511

RESUMEN

Anthraquinone derivatives are well-known antiproliferative compounds, and some are currently used in cancer chemotherapy. Some families of annulated anthraquinone analogs have also been examined for antiproliferative activity, but in this regard almost nothing is known of 1-azabenzanthrones (7H-dibenzo[de,h]quinolin-7-ones). A series of 1-azabenzanthrone derivatives, their 2,3-dihydro analogs, and congruently substituted 9,10-anthracenediones were tested against normal human fibroblasts and four human cancer cell lines. Most of the heterocyclic compounds proved to be weakly to moderately antiproliferative with IC50 values extending down to 0.86 µM, and exhibited up to 30-fold selectivity between cancer and normal cells. Both 1-azabenzanthrones and 1-aza-2,3-dihydrobenzanthrones were more potent than their anthraquinone counterparts, and almost without exception, the 2,3-dihydro compounds were more potent than the fully aromatic 1-azabenzanthrones.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , Antraquinonas/síntesis química , Antraquinonas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
15.
Bioorg Med Chem Lett ; 23(1): 327-9, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23164712

RESUMEN

Some synthetic 1-azabenzanthrones (7H-dibenzo[de,h]quinolin-7-ones) are weakly to moderately cytotoxic, suggesting that they might also show antiparasitic activity. We have now tested a small collection of these compounds in vitro against a chloroquine-resistant Plasmodium falciparum strain, comparing their cytotoxicity against normal human fibroblasts. Our results indicate that 5-methoxy-1-azabenzanthrone and its 2,3-dihydro analogue have low micromolar antiplasmodial activities and showed more than 10-fold selectivity against the parasite, indicating that the dihydro compound, in particular, might serve as a lead compound for further development.


Asunto(s)
Antimaláricos/síntesis química , Compuestos Aza/química , Benzo(a)Antracenos/química , Antimaláricos/química , Antimaláricos/toxicidad , Benzo(a)Antracenos/síntesis química , Benzo(a)Antracenos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cloroquina/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Humanos , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad
16.
J Nat Prod ; 73(11): 1951-3, 2010 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-20961068

RESUMEN

Lakshminine (6-amino-1-aza-5-methoxy-7H-dibenzo[de,h]quinolin-7-one, 1) is a recent addition to the small family of oxoisoaporphine alkaloids and a member of an even smaller set bearing an amino group at C-6. This rare natural product has now been synthesized in order to have sufficient amounts for biological testing. Lakshminine, its 4-amino isomer (2), their 6- and 4-nitro precursors (8 and 10, respectively), the intermediate 5-methoxy-7H-dibenzo[de,h]quinolin-7-one (6), and the unsubstituted skeleton (11) were tested against normal human fibroblasts and three human solid tumor cell lines. Only compound 10 showed marginal antiproliferative activity.


Asunto(s)
Alcaloides/síntesis química , Alcaloides/farmacología , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/farmacología , Aporfinas/síntesis química , Aporfinas/farmacología , Alcaloides/química , Antineoplásicos Fitogénicos/química , Aporfinas/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...