Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125036

RESUMEN

Fomitiporia species have aroused the interest of numerous investigations that reveal their biological activity and medicinal potential. The present investigation shows the antioxidant, anticancer, and immunomodulatory activity of acidic polysaccharides obtained from the fungus Fomitiporia chilensis. The acidic polysaccharides were obtained for acidic precipitation with 2% O-N-cetylpyridinium bromide. Chemical analysis was performed using FT-IR and GC-MS methods. The antioxidant capacity of acidic polysaccharides from F. chilensis was evaluated by scavenging free radicals with an ABTS assay. Macrophage proliferation and cytokine production assays were used to determine the immunomodulatory capacity of the polysaccharides. Anti-tumor and cytotoxicity activity was evaluated with an MTT assay in the U-937, HTC-116, and HGF-1 cell lines. The effect of polysaccharides on the cell cycle of the HCT-116 cell line was determined for flow cytometry. Fourier Transform-infrared characterization revealed characteristic absorption peaks for polysaccharides, whereas the GC-MS analysis detected three peaks corresponding to D-galactose, galacturonic acid, and D-glucose. The secreted TNF-α concentration was increased when the cell was treated with 2 mg mL-1 polysaccharides, whereas the IL-6 concentration was increased with all of the evaluated polysaccharide concentrations. A cell cycle analysis of HTC-116 treated with polysaccharides evidenced that the acidic polysaccharides from F. chilensis induce an increase in the G0/G1 cell cycle phase, increasing the apoptotic cell percentage. Results from a proteomic analysis suggest that some of the molecular mechanisms involved in their antioxidant and cellular detoxifying effects and justify their traditional use in heart diseases. Proteomic data are available through ProteomeXchange under identifier PXD048361. The study on acidic polysaccharides from F. chilensis has unveiled their diverse biological activities, including antioxidant, anticancer, and immunomodulatory effects. These findings underscore the promising therapeutic applications of acidic polysaccharides from F. chilensis, warranting further pharmaceutical and medicinal research exploration.


Asunto(s)
Antineoplásicos , Antioxidantes , Polisacáridos Fúngicos , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Antineoplásicos/farmacología , Antineoplásicos/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Animales , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Células HCT116 , Citocinas/metabolismo , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Espectroscopía Infrarroja por Transformada de Fourier , Apoptosis/efectos de los fármacos
2.
Mar Biotechnol (NY) ; 26(2): 324-337, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430291

RESUMEN

Seaweed from the genus Ulva (Ulvales, Chlorophyta) has a worldwide distribution and represents a potential biomass source for biotechnological applications. In the present study, we investigated the ulvan polysaccharide-rich fraction (UPRF) isolated from two Ulva species (U. rigida and U. pseudorotundata), naturally occurring on the Spanish Mediterranean coast. Chemical characterization of UPRFs was performed in order to explore the polysaccharides' composition. Biological assessments of UPRFs were compared by antioxidant activity and in vitro toxicity tests in the human cell lines: HCT-116 (colon cancer), G-361 (malignant melanoma), U-937 (leukemia), and HaCaT cells (immortalized keratinocytes). Chemical analysis revealed that both UPRFs presented rhamnose as the major relative sugar constituent, followed by glucose in U. rigida and xylose in U. pseudorotundata. Both also presented glucuronic acid, galactose, ribose, and mannose as the remaining monosaccharides. Similar antioxidant activity was obtained, where we observed increased activity in response to increased polysaccharide concentrations. Both UPRFs presented moderate toxicity against HCT-116 cell lines and a selectivity index ≥ 3, suggesting a good potential for use in pharmaceutical products.


Asunto(s)
Antioxidantes , Algas Comestibles , Polisacáridos , Ulva , Ulva/química , Humanos , Polisacáridos/farmacología , Polisacáridos/química , Antioxidantes/farmacología , Antioxidantes/química , Células HCT116 , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular , España
3.
Photochem Photobiol ; 97(5): 1032-1042, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33829505

RESUMEN

This study describes the relation of photosynthetic capacity, growth and biochemical compounds in the microalgae Porphyridium cruentum under saturated irradiance (200 µmol m-2  s-1 ) by white light (WL) and low-pressure sodium vapor lamps (SOX lamps-control) and supplemented by fluorescent lamps (FLs) with different light qualities (blue: λmax = 440 nm; green: λmax = 560 nm; and red: λmax = 660 nm). The maximum photosynthetic efficiency (Fv / Fm ) showed a positive correlation with the light quality by saturating light SOX in mixture with stimulating blue light than the white light (WL) at the harvest day (10 days). The production, that is maximal electron transport rate (ETRmax ), and energy dissipation, that is maximal nonphotochemical quenching (NPQmax ), had the same pattern throughout the time (3-6 days) being the values higher under white light (WL) compared with SOX and SOX plus supplemented different light qualities. Total protein levels increased significantly in the presence of SOX light, while phycoerythrin (B-PE) showed significant differences under SOX+ blue light. Arachidonic acid (ARA) was higher under SOX and SOX plus supplemented different light qualities than that under WL, whereas eicosapentaenoic acid (EPA) was the reverse. The high photomorphogenic potential by SOX light shows promising application for microalgal biotechnology.


Asunto(s)
Porphyridium , Rhodophyta , Biotecnología , Luz , Fotosíntesis , Ficoeritrina/química , Ficoeritrina/metabolismo , Porphyridium/metabolismo , Rhodophyta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA