Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35961610

RESUMEN

Alterations to ratios of protein and fiber in an organism's diet have been shown to structurally and functionally alter its individual digestive physiology. However, it is unclear how these dietary changes may affect phenotypic changes across generations. We utilized feeding trials, morphological analyses, enzyme activities, and 16S rRNA sequencing of the gut microbiome of zebrafish (Danio rerio) to determine how variations to fiber and protein concentrations, kept consistent across sequential generations, affect phenotypic changes. Our results show that Parental (P) and first generation (F1) fish did not differ from each other in terms of their intestine length, intestine mass, enzyme activity levels, and microbial community composition for any of the three experimental diets (high-protein/low-fiber, moderate-protein/fiber, and low-protein/high-fiber). However, each of the three experimental diets for the P and F1 fish, as well as the ancestral diet fish, did have distinct microbial community structure from one another. This indicates that there is a strong dietary effect on digestive physiology and gut microbial community and that these effects are consistent when the diet is kept homogenous across generations.


Asunto(s)
Microbioma Gastrointestinal , Pez Cebra , Animales , Dieta , Fibras de la Dieta , Fenómenos Fisiológicos del Sistema Digestivo , ARN Ribosómico 16S/genética , Pez Cebra/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-35537602

RESUMEN

Abalone around the world are subject to increasing frequency of marine heatwaves, yet we have a limited understanding of how acute high temperature events impact the physiology of these commercially and ecologically important species. This study examines the impact of a 5 °C temperature increase over ambient conditions for six weeks on the metabolic rates, digestive enzyme activities in the digestive gland, and digestive efficiency of Red Abalone (Haliotis rufescens) and Paua (H. iris) on their natural diets. We test the hypothesis that abalone digestive function can keep pace with this increased metabolic demand in two separate experiments, one for each species. H. iris had higher food intake in the heat treatment. Both species had higher metabolic rates in the heat treatment with Q10 = 1.73 and Q10 = 2.46 for H. rufescens and H. iris, respectively. Apparent organic matter digestibility, protein digestibility, and carbohydrate digestibility did not differ between the heat treatment and the ambient (control) treatment in either experiment. H. rufescens exhibited higher maltase, alanine-aminopeptidase, and leucine-aminopeptidase activities in the heat treatment. Amylase, ß-glucosidase, trypsin, and alkaline phosphatase activities in the digestive gland tissue did not differ between temperature treatments. H. iris exhibited lower amylase and ß-glucosidase activities in the heat treatment, while maltase, trypsin, leucine-aminopeptidase, and alkaline phosphatase activities did not differ between treatments. We conclude that over six weeks of moderate heat stress both abalone species were able to maintain digestive function, but achieved this maintenance in species-specific ways.


Asunto(s)
Celulasas , Gastrópodos , Fosfatasa Alcalina/metabolismo , Aminopeptidasas/metabolismo , Amilasas/metabolismo , Animales , Celulasas/metabolismo , Gastrópodos/metabolismo , Respuesta al Choque Térmico , Leucina/metabolismo , Tripsina/metabolismo , alfa-Glucosidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA