Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 615(7950): 117-126, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859578

RESUMEN

Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.


Asunto(s)
Arqueología , Genoma Humano , Genómica , Genética Humana , Caza , Paleontología , Humanos , Europa (Continente)/etnología , Pool de Genes , Historia Antigua , Genoma Humano/genética
3.
Proc Natl Acad Sci U S A ; 119(41): e2205272119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191217

RESUMEN

Trade and colonization caused an unprecedented increase in Mediterranean human mobility in the first millennium BCE. Often seen as a dividing force, warfare is in fact another catalyst of culture contact. We provide insight into the demographic dynamics of ancient warfare by reporting genome-wide data from fifth-century soldiers who fought for the army of the Greek Sicilian colony of Himera, along with representatives of the civilian population, nearby indigenous settlements, and 96 present-day individuals from Italy and Greece. Unlike the rest of the sample, many soldiers had ancestral origins in northern Europe, the Steppe, and the Caucasus. Integrating genetic, archaeological, isotopic, and historical data, these results illustrate the significant role mercenaries played in ancient Greek armies and highlight how participation in war contributed to continental-scale human mobility in the Classical world.


Asunto(s)
Arqueología , Personal Militar , Arqueología/métodos , Europa (Continente) , Grecia , Historia Antigua , Humanos , Guerra
4.
Front Genet ; 13: 945227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159977

RESUMEN

Sicily is one of the main islands of the Mediterranean Sea, and it is characterized by a variety of archaeological records, material culture and traditions, reflecting the history of migrations and populations' interaction since its first colonization, during the Paleolithic. These deep and complex demographic and cultural dynamics should have affected the genomic landscape of Sicily at different levels; however, the relative impact of these migrations on the genomic structure and differentiation within the island remains largely unknown. The available Sicilian modern genetic data gave a picture of the current genetic structure, but the paucity of ancient data did not allow so far to make predictions about the level of historical variation. In this work, we sequenced and analyzed the complete mitochondrial genomes of 36 individuals from five different locations in Sicily, spanning from Early Bronze Age to Iron Age, and with different cultural backgrounds. The comparison with coeval groups from the Mediterranean Basin highlighted structured genetic variation in Sicily since Early Bronze Age, thus supporting a demic impact of the cultural transitions within the Island. Explicit model testing through Approximate Bayesian Computation allowed us to make predictions about the origin of Sicanians, one of the three indigenous peoples of Sicily, whose foreign origin from Spain, historically attributed, was not confirmed by our analysis of genetic data. Sicilian modern mitochondrial data show a different, more homogeneous, genetic composition, calling for a recent genetic replacement in the Island of pre-Iron Age populations, that should be further investigated.

5.
Ann Hum Biol ; 48(3): 213-222, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34459344

RESUMEN

BACKGROUND: Recently, the study of mitochondrial variability in ancient humans has allowed the definition of population dynamics that characterised Europe in the Late Pleistocene and Early Holocene. Despite the abundance of sites and skeletal remains few data are available for Italy. AIM: We reconstructed the mitochondrial genomes of three Upper Palaeolithic individuals for some of the most important Italian archaeological contexts: Paglicci (South-Eastern Italy), San Teodoro (South-Western Italy) and Arene Candide (North-Western Italy) caves. SUBJECTS AND METHODS: We explored the phylogenetic relationships of the three mitogenomes in the context of Western Eurasian ancient and modern variability. RESULTS: Paglicci 12 belongs to sub-haplogroup U8c, described in only two other Gravettian individuals; San Teodoro 2 harbours a U2'3'4'7'8'9 sequence, the only lineage found in Sicily during the Late Pleistocene and Early Holocene; Arene Candide 16 displays an ancestral U5b1 haplotype already detected in other Late Pleistocene hunter-gatherers from Central Europe. CONCLUSION: Regional genetic continuity is highlighted in the Gravettian groups that succeeded in Paglicci. Data from one of the oldest human remains from Sicily reinforce the hypothesis that Epigravettian groups carrying U2'3'4'7'8'9 could be the first inhabitants of the island. The first pre-Neolithic mitogenome from North-Western Italy, sequenced here, shows more affinity with continental Europe than with the Italian peninsula.


Asunto(s)
ADN Antiguo/análisis , Genoma Humano , Genoma Mitocondrial , Arqueología , Humanos , Italia
6.
Curr Biol ; 31(16): 3606-3612.e7, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34146486

RESUMEN

Evolution on islands, together with the often extreme phenotypic changes associated with it, has attracted much interest from evolutionary biologists. However, measuring the rate of change of phenotypic traits of extinct animals can be challenging, in part due to the incompleteness of the fossil record. Here, we use combined molecular and fossil evidence to define the minimum and maximum rate of dwarfing in an extinct Mediterranean dwarf elephant from Puntali Cave (Sicily).1 Despite the challenges associated with recovering ancient DNA from warm climates,2 we successfully retrieved a mitogenome from a sample with an estimated age between 175,500 and 50,000 years. Our results suggest that this specific Sicilian elephant lineage evolved from one of the largest terrestrial mammals that ever lived3 to an island species weighing less than 20% of its original mass with an estimated mass reduction between 0.74 and 200.95 kg and height reduction between 0.15 and 41.49 mm per generation. We show that combining ancient DNA with paleontological and geochronological evidence can constrain the timing of phenotypic changes with greater accuracy than could be achieved using any source of evidence in isolation.


Asunto(s)
ADN Antiguo , Elefantes , Fósiles , Animales , ADN Mitocondrial/genética , Elefantes/genética , Extinción Biológica , Filogenia , Sicilia
7.
Mitochondrion ; 58: 95-101, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33675980

RESUMEN

The presence of different sets of mitochondrial polymorphisms generated by the accumulation of mutations in different maternal lineages has allowed differentiating mitochondrial haplogroups in human populations. These polymorphisms, in turn, may have effects at the phenotypic level, considering a possible contribution of these germinal mutations to the development of certain diseases such as cancer. The main goal of the present study is to establish a possible association between mitochondrial haplogroups and the risk of suffering glioma. Blood samples were obtained from 32 patients from Catalonia (Spain) diagnosed with different grades of glioma (II, III and IV), according to the World Health Organization. The mitochondrial genome was amplified and sequenced using MiSeq 2000 (Illumina). The HaploGrep tool implemented in mtDNA-Server v.1.0.5 was used for the identification of mitochondrial haplogroups. Data obtained in the present study was further pooled with data from previous European studies including glioma patients from Galicia (Spain) and Italy. Results for the Catalonian samples showed an association between individuals with haplogroup J and the increased risk of suffering glioma, with a significant increase of the frequency of individuals with this haplogroup (25%) regarding the general population (7%). Combining different sets of patients with European origin, it appears that individuals with haplogroups J and T have a significantly higher risk of suffering glioma (p < 0.001; OR: 2.407 and p = 0.007; OR: 1.82, respectively). This is the first study that establishes an association between different mitochondrial haplogroups and the risk of suffering glioma, highlighting the role of mitochondrial variants in this disease.


Asunto(s)
Neoplasias Encefálicas/genética , ADN Mitocondrial/genética , Predisposición Genética a la Enfermedad , Glioma/genética , Haplotipos , Adulto , Femenino , Humanos , Masculino
9.
Nat Ecol Evol ; 4(3): 334-345, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32094539

RESUMEN

Steppe-pastoralist-related ancestry reached Central Europe by at least 2500 BC, whereas Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 BC. However, the spread of these ancestries into the western Mediterranean, where they have contributed to many populations that live today, remains poorly understood. Here, we generated genome-wide ancient-DNA data from the Balearic Islands, Sicily and Sardinia, increasing the number of individuals with reported data from 5 to 66. The oldest individual from the Balearic Islands (~2400 BC) carried ancestry from steppe pastoralists that probably derived from west-to-east migration from Iberia, although two later Balearic individuals had less ancestry from steppe pastoralists. In Sicily, steppe pastoralist ancestry arrived by ~2200 BC, in part from Iberia; Iranian-related ancestry arrived by the mid-second millennium BC, contemporary to its previously documented spread to the Aegean; and there was large-scale population replacement after the Bronze Age. In Sardinia, nearly all ancestry derived from the island's early farmers until the first millennium BC, with the exception of an outlier from the third millennium BC, who had primarily North African ancestry and who-along with an approximately contemporary Iberian-documents widespread Africa-to-Europe gene flow in the Chalcolithic. Major immigration into Sardinia began in the first millennium BC and, at present, no more than 56-62% of Sardinian ancestry is from its first farmers. This value is lower than previous estimates, highlighting that Sardinia, similar to every other region in Europe, has been a stage for major movement and mixtures of people.


Asunto(s)
Agricultura , ADN Antiguo , Estudio de Asociación del Genoma Completo , África , Antropología , Emigración e Inmigración , Europa (Continente) , Humanos , Irán , Islas , Sicilia , España
10.
Int J Paleopathol ; 25: 1-8, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30913508

RESUMEN

OBJECTIVE: To evaluate, via a multidisciplinary approach, a distinctive paleopathological condition believed to be fibrous dysplasia, found on a 19th/20th century skeleton from Certosa Monumental Cemetery, Bologna, Italy. MATERIALS: A skeletonized cranium and mandible recovered from an ossuary in 2014. METHODS: Pathological alterations were analysed by radiological examination, dental macrowear, histopathological and genetic analyses. RESULT: The skeleton is believed to be an adult male. Differential diagnoses include Paget's disease, McCune-Albright syndrome, osteochondroma and osteosarcoma. The radiographic findings, along with the solitary nature of the lesions, are strong evidence for the diagnosis of fibrous dysplasia (FD). Genetic analysis further revealed a frequency of ˜1% of mutant alleles with the R201C substitution, one of the post-zygotic activating mutation frequently associated with FD. CONCLUSIONS: The multi-analytical method employed suggests a diagnosis of monostotic form of FD. The diagnostic design incorporates multiple lines of evidence, including macroscopic, histopathological, and genetic analyses. SIGNIFICANCE: Through the use of a multi-analytic approach, robust diagnoses can be offered. This case serves as one of the oldest examples of FD from an historical context. The genetic mutation detected, associated with FD, has not been previously reported in historical/ancient samples.


Asunto(s)
Displasia Fibrosa Craneofacial/diagnóstico por imagen , Adulto , Sustitución de Aminoácidos , Cementerios/historia , Displasia Fibrosa Craneofacial/genética , Displasia Fibrosa Craneofacial/historia , Displasia Fibrosa Craneofacial/patología , Displasia Fibrosa Poliostótica/diagnóstico por imagen , Displasia Fibrosa Poliostótica/historia , Displasia Fibrosa Poliostótica/patología , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Italia , Masculino , Mutación , Osteítis Deformante/diagnóstico por imagen , Osteítis Deformante/patología , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/historia , Osteosarcoma/patología , Tomografía Computarizada por Rayos X/historia
11.
BMC Res Notes ; 8: 535, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26438258

RESUMEN

Here we present evidence to show that the pla gene, previously thought to be specific to Yersinia pestis, occurs in some strains of Citrobacter koseri and Escherichia coli. This means that detection of this gene on its own can no longer be taken as evidence of detection of Y. pestis.


Asunto(s)
Proteínas Bacterianas/genética , Citrobacter koseri/genética , Secuencia Conservada , Escherichia coli/genética , Fósiles/microbiología , Activadores Plasminogénicos/genética , Yersinia pestis/genética , Arqueología , Secuencia de Bases , Expresión Génica , Datos de Secuencia Molecular , Plásmidos/química , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN
12.
Am J Hum Biol ; 26(4): 556-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24677298

RESUMEN

OBJECTIVES: The main goal of this study is to increase knowledge on the molecular level of the ABO blood group system in Europe by providing data for Poland, Spain, and Andorra populations. METHODS: A total of 172 oral scrapings samples from individuals of Polish origin, 108 peripheral blood samples of autochthonous individuals from the province of Zamora (Spain), and 81 peripheral blood samples from individuals with Andorran origin, were analyzed. Molecular characterization of the allelic variants was performed by the analysis of exons 6 and 7 of the ABO gene. RESULTS: Seven common alleles were identified, namely: A101, A102, A201, B101, O01, O02, and O03. Less common variants (O05, O09, O21, O26, O06, O11, and O12), were also detected. CONCLUSIONS: The results obtained contribute to the knowledge of the molecular European ABO map, and are discussed in regard to the allelic frequency reported by other Caucasian and Asian populations.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/genética , Polimorfismo Genético , Sistema del Grupo Sanguíneo ABO/metabolismo , Alelos , Andorra , Exones , Frecuencia de los Genes , Humanos , Polonia , España
13.
PLoS One ; 7(11): e49802, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209602

RESUMEN

Hunter-gatherers living in Europe during the transition from the late Pleistocene to the Holocene intensified food acquisition by broadening the range of resources exploited to include marine taxa. However, little is known on the nature of this dietary change in the Mediterranean Basin. A key area to investigate this issue is the archipelago of the Ègadi Islands, most of which were connected to Sicily until the early Holocene. The site of Grotta d'Oriente, on the present-day island of Favignana, was occupied by hunter-gatherers when Postglacial environmental changes were taking place (14,000-7,500 cal BP). Here we present the results of AMS radiocarbon dating, palaeogenetic and isotopic analyses undertaken on skeletal remains of the humans buried at Grotta d'Oriente. Analyses of the mitochondrial hypervariable first region of individual Oriente B, which belongs to the HV-1 haplogroup, suggest for the first time on genetic grounds that humans living in Sicily during the early Holocene could have originated from groups that migrated from the Italian Peninsula around the Last Glacial Maximum. Carbon and nitrogen isotope analyses show that the Upper Palaeolithic and Mesolithic hunter-gatherers of Favignana consumed almost exclusively protein from terrestrial game and that there was only a slight increase in marine food consumption from the late Pleistocene to the early Holocene. This dietary change was similar in scale to that at sites on mainland Sicily and in the rest of the Mediterranean, suggesting that the hunter-gatherers of Grotta d'Oriente did not modify their subsistence strategies specifically to adapt to the progressive isolation of Favignana. The limited development of technologies for intensively exploiting marine resources was probably a consequence both of Mediterranean oligotrophy and of the small effective population size of these increasingly isolated human groups, which made innovation less likely and prevented transmission of fitness-enhancing adaptations.


Asunto(s)
Antropología Física , Dieta , Antropología Física/historia , Huesos/química , Radioisótopos de Carbono/química , Colágeno/química , ADN Mitocondrial , Haplotipos , Historia Antigua , Humanos , Isótopos de Nitrógeno/química , Sicilia
14.
BMC Evol Biol ; 11: 32, 2011 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-21281509

RESUMEN

BACKGROUND: Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. RESULTS: In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments--namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. CONCLUSIONS: Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins.


Asunto(s)
Bovinos/genética , Genoma Mitocondrial , Paleontología , Animales , Bovinos/clasificación , ADN Mitocondrial/genética , Evolución Molecular , Italia , Datos de Secuencia Molecular , Filogenia
15.
PLoS One ; 5(5): e10648, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20498832

RESUMEN

BACKGROUND: The high frequency (around 0.70 worldwide) and the relatively young age (between 14,000 and 62,000 years) of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1) locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the first PCR amplification and high-throughput sequencing of nuclear DNA at the microcephalin (MCPH1) locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy). We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. CONCLUSIONS/SIGNIFICANCE: The MCPH1 genotype of the Monti Lessini (MLS) Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.


Asunto(s)
Alelos , Fósiles , Proteínas del Tejido Nervioso/genética , Filogenia , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , ADN Mitocondrial/genética , Sitios Genéticos/genética , Humanos , Análisis de Secuencia de ADN
16.
BMC Evol Biol ; 10: 83, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20346116

RESUMEN

BACKGROUND: The aurochs (Bos primigenius) was a large bovine that ranged over almost the entirety of the Eurasian continent and North Africa. It is the wild ancestor of the modern cattle (Bos taurus), and went extinct in 1627 probably as a consequence of human hunting and the progressive reduction of its habitat. To investigate in detail the genetic history of this species and to compare the population dynamics in different European areas, we analysed Bos primigenius remains from various sites across Italy. RESULTS: Fourteen samples provided ancient DNA fragments from the mitochondrial hypervariable region. Our data, jointly analysed with previously published sequences, support the view that Italian aurochsen were genetically similar to modern bovine breeds, but very different from northern/central European aurochsen. Bayesian analyses and coalescent simulations indicate that the genetic variation pattern in both Italian and northern/central European aurochsen is compatible with demographic stability after the last glaciation. We provide evidence that signatures of population expansion can erroneously arise in stable aurochsen populations when the different ages of the samples are not taken into account. CONCLUSIONS: Distinct groups of aurochsen probably inhabited Italy and northern/central Europe after the last glaciation, respectively. On the contrary, Italian and Fertile Crescent aurochsen likely shared several mtDNA sequences, now common in modern breeds. We argue that a certain level of genetic homogeneity characterized aurochs populations in Southern Europe and the Middle East, and also that post-glacial recolonization of northern and central Europe advanced, without major demographic expansions, from eastern, and not southern, refugia.


Asunto(s)
Extinción Biológica , Genética de Población , Rumiantes/genética , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Geografía , Haplotipos , Italia , Filogenia , Dinámica Poblacional , Análisis de Secuencia de ADN
17.
Science ; 318(5855): 1453-5, 2007 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-17962522

RESUMEN

The melanocortin 1 receptor (MC1R) regulates pigmentation in humans and other vertebrates. Variants of MC1R with reduced function are associated with pale skin color and red hair in humans of primarily European origin. We amplified and sequenced a fragment of the MC1R gene (mc1r) from two Neanderthal remains. Both specimens have a mutation that was not found in approximately 3700 modern humans analyzed. Functional analyses show that this variant reduces MC1R activity to a level that alters hair and/or skin pigmentation in humans. The impaired activity of this variant suggests that Neanderthals varied in pigmentation levels, potentially on the scale observed in modern humans. Our data suggest that inactive MC1R variants evolved independently in both modern humans and Neanderthals.


Asunto(s)
Fósiles , Color del Cabello/genética , Hominidae/genética , Mutación , Receptor de Melanocortina Tipo 1/genética , Pigmentación de la Piel/genética , Alelos , Sustitución de Aminoácidos , Animales , Evolución Biológica , Línea Celular , ADN/genética , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Receptor de Melanocortina Tipo 1/química , Receptor de Melanocortina Tipo 1/metabolismo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...