Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Gene Ther ; 31(11-12): 617-625, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32363942

RESUMEN

Thalamic infusion of adeno-associated viral (AAV) vectors has been shown to have therapeutic effects in neuronopathic lysosomal storage diseases. Preclinical studies in sheep model of Tay-Sachs disease demonstrated that bilateral thalamic injections of AAV gene therapy are required for maximal benefit. Translation of thalamic injection to patients carries risks in that (1) it has never been done in humans, and (2) dosing scale-up based on brain weight from animals to humans requires injection of larger volumes. To increase the safety margin of this infusion, a flexible cannula was selected to enable simultaneous bilateral thalamic infusion in infants while monitoring by imaging and/or to enable awake infusions for injection of large volumes at low infusion rates. In this study, we tested various infusion volumes (200-800 µL) and rates (0.5-5 µL/min) to determine the maximum tolerated combination of injection parameters. Animals were followed for ∼1 month postinjection with magnetic resonance imaging (MRI) performed at 14 and 28 days. T1-weighted MRI was used to quantify thalamic damage followed by histopathological assessment of the brain. Trends in data show that infusion volumes of 800 µL (2 × the volume required in sheep based on thalamic size) resulted in larger lesions than lower volumes, where the long infusion times (between 13 and 26 h) could have contributed to the generation of larger lesions. The target volume (400 µL, projected to be sufficient to cover most of the sheep thalamus) created the smallest lesion size. Cannula placement alone did result in damage, but this is likely associated with an inherent limitation of its use in a small brain due to the length of the distal rigid portion and lack of stable fixation. An injection rate of 5 µL/min at a volume ∼1/3 of the thalamus (400-600 µL) appears to be well tolerated in sheep both clinically and histopathologically.


Asunto(s)
Terapia Genética/métodos , Inyecciones/métodos , Enfermedad de Tay-Sachs/terapia , Tálamo/patología , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Ovinos , Enfermedad de Tay-Sachs/genética
2.
Mol Ther ; 28(2): 411-421, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31813800

RESUMEN

Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.


Asunto(s)
Cisterna Magna/metabolismo , Dependovirus/genética , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Transducción Genética , Animales , Catéteres , Sistema Nervioso Central/metabolismo , Genes Reporteros , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Inyecciones Espinales , Imagen por Resonancia Magnética , Modelos Animales , Ovinos , Cirugía Asistida por Computador , Tomografía Computarizada por Rayos X , Transgenes , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...