Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Commun ; 15(1): 3061, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594238

RESUMEN

Radiation mapping has attracted widespread research attention and increased public concerns on environmental monitoring. Regarding materials and their configurations, radiation detectors have been developed to identify the position and strength of the radioactive sources. However, due to the complex mechanisms of radiation-matter interaction and data limitation, high-performance and low-cost radiation mapping is still challenging. Here, we present a radiation mapping framework using Tetris-inspired detector pixels. Applying inter-pixel padding for enhancing contrast between pixels and neural networks trained with Monte Carlo (MC) simulation data, a detector with as few as four pixels can achieve high-resolution directional prediction. A moving detector with Maximum a Posteriori (MAP) further achieved radiation position localization. Field testing with a simple detector has verified the capability of the MAP method for source localization. Our framework offers an avenue for high-quality radiation mapping with simple detector configurations and is anticipated to be deployed for real-world radiation detection.

2.
Phys Med Biol ; 69(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38252971

RESUMEN

Objective.Standard signal processing approaches for scintillation detectors in positron emission tomography (PET) derive accurate estimates for 511 keV photon time of interaction and energy imparted to the detection media from aggregate characteristics of electronic pulse shapes. The ultimate realization of a scintillation detector for PET is one that provides a unique timestamp and position for each detected scintillation photon. Detectors with these capabilities enable advanced concepts for three-dimensional (3D) position and time of interaction estimation with methods that exploit the spatiotemporal arrival time kinetics of individual scintillation photons.Approach.In this work, we show that taking into consideration the temporal photon emission density of a scintillator, the channel density of an analog silicon photomultiplier (SiPM) array, and employing fast electronic readout with digital signal processing, a detector that counts and timestamps scintillation photons can be realized. To demonstrate this approach, a prototype detector was constructed, comprising multichannel electronic readout for a bismuth germanate (BGO) scintillator coupled to an SiPM array.Main Results.In proof-of-concept measurements with this detector, we were able to count and provide unique timestamps for 66% of all optical photons, where the remaining 34% (two-or-more-photon pulses) are also independently counted, but each photon bunch shares a common timestamp. We show this detector concept can implement 3D positioning of 511 keV photon interactions and thereby enable corrections for time of interaction estimators. The detector achieved 17.6% energy resolution at 511 keV and 237 ± 10 ps full-width-at-half-maximum coincidence time resolution (CTR) (fast spectral component) versus a reference detector. We outline the methodology, readout, and approach for achieving this detector capability in first-ever, proof-of-concept measurements for scintillation photon counting detector with analog silicon photomultipliers.Significance.The presented detector concept is a promising design for large area, high sensitivity TOF-PET detector modules that can implement advanced event positioning and time of interaction estimators, which could push state-of-the-art performance.


Asunto(s)
Tomografía de Emisión de Positrones , Conteo por Cintilación , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/métodos , Fotones , Electrónica , Electrones
3.
IEEE Trans Radiat Plasma Med Sci ; 6(6): 690-696, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36060422

RESUMEN

We have evaluated CTR performance of four different mixed-signal front-end electronic readout configurations with the goal to achieve 100 picoseconds (ps) coincidence time resolution (CTR). The proposed TOF-PET detector elements are based on two 3 × 3 × 10 mm3 "fast LGSO" crystal segments, side-coupled to linear arrays of 3 × 3 mm2 silicon photomultipliers (SiPMs), to form a total crystal length of 20 mm. We studied multiple configurations and components for the front-end readout: 1) high speed radio frequency (RF) amplifiers; 2) an ASIC-based discriminator; 3) combination of RF amplifier, balun transformer, and discriminator ASIC; and 4) combination of balun transformer, and discriminator ASIC. Using two 3 × 3 × 10 mm3 fast LGSO crystals side coupled to a linear array of three SiPMs, coincidence data were experimentally acquired for each readout configuration in combination with a low jitter field programmable gate array (FPGA)-based time to digital converter (TDC). After evaluating timing performance of the three readout schemes, the best CTR value of 99.4 ± 1.9 ps FWHM was achieved for configuration (3), which is more than 20 ps better than the results achieved using configurations (1) and (2).

4.
Phys Med Biol ; 67(19)2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35961297

RESUMEN

State-of-the-art (SoA) electronic readout for silicon photomultiplier (SiPM)-based scintillation detectors that demonstrate experimental limits in achievable coincidence time resolution (CTR) leverage low noise, high frequency signal processing to facilitate a single photon time response that is near the limit of the SiPMs architecture. This readout strategy can optimally exploit fast luminescence and prompt photon populations, and promising measurements show detector concepts employing this readout can greatly advance PET detector CTR, relative to SoA in clinical systems. However, the technique employs power hungry components which make the electronics chain impractical for channel-dense time-of-flight (TOF)-PET detectors. We have developed and tested a low noise and high frequency readout circuit which is performant at low power and consists of discrete elements with small footprints, making it feasible for integration into TOF-PET detector prototypes. A 3 × 3 mm2Broadcom SiPM with this readout chain exhibited sub-100 ps single photon time resolution at 10 mW of power consumption, with a relatively minor performance degradation to 120 ± 2 ps FWHM at 5 mW. CTR measurements with 3 × 3 × 20 mm3LYSO and fast LGSO scintillators demonstrated 127 ± 3 ps and 113 ± 2 ps FWHM at optimal power operation and 133 ± 2 ps and 121 ± 3 ps CTR at 5 mW. BGO crystals 3 × 3 × 20 mm3in size show 271 ± 5 ps FWHM CTR (1174 ± 14 ps full-width-at-tenth-maximum (FWTM)) at optimal power dissipation and 289 ± 8 ps (1296 ± 33 ps FWTM) at 5 mW. The compact and low power readout topology that achieves this performance thereby offers a platform to greatly advance PET system CTR and also opportunities to provide high performance TOF-PET at reduced material cost.


Asunto(s)
Tomografía de Emisión de Positrones , Conteo por Cintilación , Electrónica , Fotones , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/métodos
5.
Sensors (Basel) ; 22(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35591242

RESUMEN

Neutron double scatter imaging exploits the kinematics of neutron elastic scattering to enable emission imaging of neutron sources. Due to the relatively low coincidence detection efficiency of fast neutrons in organic scintillator arrays, imaging efficiency for double scatter cameras can also be low. One method to realize significant gains in neutron coincidence detection efficiency is to develop neutron double scatter detectors which employ monolithic blocks of organic scintillator, instrumented with photosensor arrays on multiple faces to enable 3D position and multi-interaction time pickoff. Silicon photomultipliers (SiPMs) have several advantageous characteristics for this approach, including high photon detection efficiency (PDE), good single photon time resolution (SPTR), high gain that translates to single photon counting capabilities, and ability to be tiled into large arrays with high packing fraction and photosensitive area fill factor. However, they also have a tradeoff in high uncorrelated and correlated noise rates (dark counts from thermionic emissions and optical photon crosstalk generated during avalanche) which may complicate event positioning algorithms. We have evaluated the noise characteristics and SPTR of Hamamatsu S13360-6075 SiPMs with low noise, fast electronic readout for integration into a monolithic neutron scatter camera prototype. The sensors and electronic readout were implemented in a small-scale prototype detector in order to estimate expected noise performance for a monolithic neutron scatter camera and perform proof-of-concept measurements for scintillation photon counting and three-dimensional event positioning.

6.
Sci Rep ; 11(1): 20515, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654855

RESUMEN

The ability to map and estimate the activity of radiological source distributions in unknown three-dimensional environments has applications in the prevention and response to radiological accidents or threats as well as the enforcement and verification of international nuclear non-proliferation agreements. Such a capability requires well-characterized detector response functions, accurate time-dependent detector position and orientation data, a digitized representation of the surrounding 3D environment, and appropriate image reconstruction and uncertainty quantification methods. We have previously demonstrated 3D mapping of gamma-ray emitters with free-moving detector systems on a relative intensity scale using a technique called Scene Data Fusion (SDF). Here we characterize the detector response of a multi-element gamma-ray imaging system using experimentally benchmarked Monte Carlo simulations and perform 3D mapping on an absolute intensity scale. We present experimental reconstruction results from hand-carried and airborne measurements with point-like and distributed sources in known configurations, demonstrating quantitative SDF in complex 3D environments.

7.
Biomed Phys Eng Express ; 7(6)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34488203

RESUMEN

Positron Emission Tomography (PET) reconstructed image signal-to-noise ratio (SNR) can be improved by including the 511 keV photon pair coincidence time-of-flight (TOF) information. The degree of SNR improvement from this TOF capability depends on the coincidence time resolution (CTR) of the PET system, which is essentially the variation in photon arrival time differences over all coincident photon pairs detected for a point positron source placed at the system center. The CTR is determined by several factors including the intrinsic properties of the scintillation crystals and photodetectors, crystal-to-photodetector coupling configurations, reflective materials, and the electronic readout configuration scheme. The goal of the present work is to build a novel TOF-PET system with 100 picoseconds (ps) CTR, which provides an additional factor of 1.5-2.0 improvement in reconstructed image SNR compared to state-of-the-art TOF-PET systems which achieve 225-400 ps CTR. A critical parameter to understand is the optical reflector's influence on scintillation light collection and transit time variations to the photodetector. To study the effects of the reflector covering the scintillation crystal element on CTR, we have tested the performance of four different reflector materials: Enhanced Specular Reflector (ESR) -coupled with air or optical grease to the scintillator; Teflon tape; BaSO4paint alone or mixed with epoxy; and TiO2paint. For the experimental set-up, we made use of 3 × 3 × 10 mm3fast-LGSO:Ce scintillation crystal elements coupled to an array of silicon photomultipliers (SiPMs) using a novel 'side-readout' configuration that has proven to have lower variations in scintillation light collection efficiency and transit time to the photodetector.Results: show CTR values of 102.0 ± 0.8, 100.2 ± 1.2, 97.3 ± 1.8 and 95.0 ± 1.0 ps full-width-half-maximum (FWHM) with non-calibrated energy resolutions of 10.2 ± 1.8, 9.9 ± 1.2, 7.9 ± 1.2, and 8.6 ± 1.7% FWHM for the Teflon, ESR (without grease), BaSO4(without epoxy) and TiO2paint treatments, respectively.


Asunto(s)
Tomografía de Emisión de Positrones , Cerio , Electrones , Fotones , Politetrafluoroetileno , Conteo por Cintilación
8.
Phys Med Biol ; 66(12)2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34106089

RESUMEN

Photon time-of-flight (TOF) capability in positron emission tomography (PET) enables reconstructed image signal-to-noise ratio (SNR) improvement. With the coincidence time resolution (CTR) of 100 picosecond (ps), a five-fold SNR improvement can be achieved with a 40 cm diameter imaging subject, relative to a system without TOF capability. This 100 ps CTR can be achieved for aclinically relevantdetector design (crystal element length ≥20 mm with reasonably high crystal packing fraction) using a side-readout PET detector configuration that enables 511 keV photon interaction depth-independent light collection efficiency and lower variance in scintillation photon transit time to the silicon photomultiplier (SiPM). In this study, we propose a new concept of TOF-PET detector to achieve high (<2 mm) resolution, using a 'side-coupled phoswich' configuration, where two crystals with different decay times (τd) are coupled in a side-readout configuration to a common row of photosensors. The proposed design was validated and optimized with GATE Monte Carlo simulation studies to determine an efficient detector design. Based on the simulation results, a proof-of-concept side-coupled phoswich detector design was developed comprising two LSO crystals with the size of 1.9 × 1.9 × 10 mm3with decay times of 34.39 and 43.07 ns, respectively. The phoswich crystals were side-coupled to the same three 4 × 4 mm2SiPMs and detector performances were evaluated. As a result of the experimental evaluation, the side-coupled phoswich configuration achieved CTR of 107 ± 3 ps, energy resolution of 10.5% ± 1.21% at 511 keV and >95% accuracy in identifying interactions in the two adjacent 1.9 × 1.9 × 10 mm3crystal elements using the time-over-threshold technique. Based on our results, we can achieve excellent spatial and energy resolution in addition to ∼100 ps CTR with this novel detector design.


Asunto(s)
Fotones , Tomografía de Emisión de Positrones , Simulación por Computador , Método de Montecarlo , Conteo por Cintilación
9.
Phys Med Biol ; 66(8)2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33761476

RESUMEN

We have developed a scalable detector readout design for a 100 ps coincidence time resolution (CTR) time of flight (TOF) positron emission tomography (PET) detector technology. The basic scintillation detectors studied in this paper are based on 2 × 4 arrays of 3 × 3 × 10 mm3'fast-LGSO:Ce' scintillation crystals side-coupled to 6 × 4 arrays of 3 × 3 mm2silicon photomultipliers (SiPMs). We employed a novel mixed-signal front-end electronic configuration and a low timing jitter Field Programming Gate Array-based time to digital converter for data acquisition. Using a22Na point source, >10 000 coincidence events were experimentally acquired for several SiPM bias voltages, leading edge time-pickoff thresholds, and timing channels. CTR of 102.03 ± 1.9 ps full-width-at-half-maximum (FWHM) was achieved using single 3 × 3 × 10 mm3'fast-LGSO' crystal elements, wrapped in Teflon tape and side coupled to a linear array of 3 SiPMs. In addition, the measured average CTR was 113.4 ± 0.7 ps for the side-coupled 2 × 4 crystal array. The readout architecture presented in this work is designed to be scalable to large area module detectors with a goal to create the first TOF-PET system with 100 ps FWHM CTR.


Asunto(s)
Tomografía de Emisión de Positrones , Electrónica , Conteo por Cintilación
10.
Phys Med Biol ; 65(24): 245004, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32693396

RESUMEN

Depth-of-interaction (DOI) variability of annihilation photons is known to be a source of coincidence time resolution (CTR) degradation for fast time-of-flight-positron emission tomography detectors. An analytical model was recently proposed to explicitly include the DOI time bias separately from variance-related statistical factors, such as scintillation photon emission and photosensor jitter, in the CTR evaluation. In the present work, an experimental validation of this new model is provided. An unconventional signal readout configuration was used to magnify the DOI bias with 20 mm long LYSO:Ce crystals. In a head-to-head orientation of the crystals, simulations performed using the metric with DOI bias exhibited a much better agreement (within 21 ps) with the experimentally measured CTR of 413 ± 8 ps full-width at half maximum, whereas simulations without DOI bias underestimated the CTR by 138 ps. The metric including DOI bias was shown to also be effective at predicting the CTR of the head-to-head setup (without DOI information) using data from a DOI-collimated experimental setup (with partial DOI information). With the development of new low-variance ultra-fast detectors, the DOI timing blur will become increasingly important and will need to be taken into account in analytical predictions and in some experimental measurements through the proposed metric.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones , Fotones , Conteo por Cintilación , Factores de Tiempo
11.
Phys Med Biol ; 64(17): 175016, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31300623

RESUMEN

Exploiting the moderate Cherenkov yield from 511 keV photoelectric interactions in bismuth germanate (BGO) scintillators enables one to achieve a level of coincidence time resolution (CTR) appropriate for time-of-flight positron emission tomography (TOF-PET). For this approach, owing to the low number of promptly emitted light photons, single photon time resolution (SPTR) can have a stronger influence on achievable CTR. We have previously shown readout techniques that reduce effective device capacitance of large area silicon photomultipliers (SiPMs) can yield improvements in single photon response shape that minimize the influence of electronic noise on SPTR. With these techniques, sub-100 ps FWHM SPTR can be achieved with [Formula: see text] mm2 FBK near-ultra-violet high density (NUV-HD) SiPMs. These sensors are also useful for detecting Cherenkov light due to relatively high photon detection efficiency for UV light. In this work, we measured CTR for BGO crystals coupled to FBK NUV-HD SiPMs with a passive bootstrapping readout circuit that effectively reduces the SiPM device capacitance. A range of CTR values between 200 [Formula: see text] 3 and 277 [Formula: see text] 7 ps FWHM were measured for 3 [Formula: see text] 3 [Formula: see text] 3 and 3 [Formula: see text] 3 [Formula: see text] 15 mm3 crystals, respectively. This readout technique provides a relatively simple approach to achieve state-of-the-art CTR performance using BGO crystals for TOF-PET.


Asunto(s)
Electrónica/instrumentación , Germanio/efectos de la radiación , Fotones , Conteo por Cintilación/instrumentación , Bismuto , Tomografía de Emisión de Positrones/instrumentación , Rayos Ultravioleta
12.
Sensors (Basel) ; 19(11)2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167360

RESUMEN

The enormous advances in sensing and data processing technologies in combination with recent developments in nuclear radiation detection and imaging enable unprecedented and "smarter" ways to detect, map, and visualize nuclear radiation. The recently developed concept of three-dimensional (3-D) Scene-data fusion allows us now to "see" nuclear radiation in three dimensions, in real time, and specific to radionuclides. It is based on a multi-sensor instrument that is able to map a local scene and to fuse the scene data with nuclear radiation data in 3-D while the instrument is freely moving through the scene. This new concept is agnostic of the deployment platform and the specific radiation detection or imaging modality. We have demonstrated this 3-D Scene-data fusion concept in a range of configurations in locations, such as the Fukushima Prefecture in Japan or Chernobyl in Ukraine on unmanned and manned aerial and ground-based platforms. It provides new means in the detection, mapping, and visualization of radiological and nuclear materials relevant for the safe and secure operation of nuclear and radiological facilities or in the response to accidental or intentional releases of radioactive materials where a timely, accurate, and effective assessment is critical. In addition, the ability to visualize nuclear radiation in 3-D and in real time provides new means in the communication with public and facilitates to overcome one of the major public concerns of not being able to "see" nuclear radiation.

13.
Phys Med Biol ; 63(18): 185022, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30129562

RESUMEN

A key step to improve the coincidence time resolution of positron emission tomography detectors that exploit small populations of promptly emitted photons is improving the single photon time resolution (SPTR) of silicon photomultipliers (SiPMs). The influence of electronic noise has previously been identified as the dominant factor affecting SPTR for large area, analog SiPMs. In this work, we measure the achievable SPTR with front end electronic readout that minimizes the influence of electronic noise. With this readout circuit, the SPTR measured for one FBK NUV single avalanche photodiode (SPAD) was also achieved with a [Formula: see text] mm2 FBK NUV SiPM. SPTR for large area devices was also significantly improved. The measured SPTRs for [Formula: see text] mm2 Hamamatsu and SensL SiPMs were [Formula: see text]150 ps FWHM, and SPTR [Formula: see text]100 ps FWHM was measured for [Formula: see text] mm2 and [Formula: see text] mm2 FBK NUV and NUV-HD SiPMs. We also explore additional factors affecting the achievable SPTR for large area, analog SiPMs when the contribution of electronic noise is minimized and pinpoint potential areas of improvement to further reduce the SPTR of large area sensors towards that achievable for a single SPAD.


Asunto(s)
Amplificadores Electrónicos/normas , Fotones , Tomografía de Emisión de Positrones/instrumentación , Relación Señal-Ruido , Tiempo
14.
Phys Med Biol ; 63(11): 115011, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29762136

RESUMEN

Commercially available clinical positron emission tomography (PET) detectors employ scintillation crystals that are long ([Formula: see text]20 mm length) and narrow (4-5 mm width) optically coupled on their narrow end to a photosensor. The aspect ratio of this traditional crystal rod configuration and 511 keV photon attenuation properties yield significant variances in scintillation light collection efficiency and transit time to the photodetector, due to variations in the 511 keV photon interaction depth in the crystal. These variances contribute significant to coincidence time resolution degradation. If instead, crystals are coupled to a photosensor on their long side, near-complete light collection efficiency can be achieved, and scintillation photon transit time jitter is reduced. In this work, we compare the achievable coincidence time resolution (CTR) of LGSO:Ce(0.025 mol%) crystals 3-20 mm in length when optically coupled to silicon photomultipliers (SiPMs) on either their short end or long side face. In this 'side readout' configuration, a CTR of 102 ± 2 ps FWHM was measured with [Formula: see text] mm3 crystals coupled to rows of [Formula: see text] mm2 SensL-J SiPMs using leading edge time pickoff and a single timing channel. This is in contrast to a CTR of 137 ± 3 ps FWHM when the same crystals were coupled to single [Formula: see text] mm2 SiPMs on their narrow ends. We further study the statistical limit on CTR using side readout via the Cramér-Rao lower bound (CRLB), with consideration given to ongoing work to further improve photosensor technologies and exploit fast phenomena to ultimately achieve 10 ps FWHM CTR. Potential design aspects of scalable front-end signal processing readout electronics using this side readout configuration are discussed. Altogether, we demonstrate that the side readout configuration offers an immediate solution for 100 ps CTR clinical PET detectors and mitigates factors prohibiting future efforts to achieve 10 ps FWHM CTR.


Asunto(s)
Fotones , Tomografía de Emisión de Positrones/instrumentación , Conteo por Cintilación/instrumentación , Electrónica , Humanos , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/métodos , Sensibilidad y Especificidad
15.
J Med Imaging (Bellingham) ; 4(1): 011012, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28382312

RESUMEN

Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system's back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a [Formula: see text] array of SensL MicroFC-30035 SiPMs coupled to [Formula: see text] Lu1.8Gd0.2SiO5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of [Formula: see text] FWHM between the 16-pixel multiplexed detector array and a [Formula: see text] LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance.

16.
Phys Med Biol ; 62(1): 258-271, 2017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-27991437

RESUMEN

It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising [Formula: see text] mm LYSO:Ce crystal optically coupled to [Formula: see text] mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was [Formula: see text]% and [Formula: see text]% FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics.


Asunto(s)
Tomografía de Emisión de Positrones/instrumentación , Equipos y Suministros Eléctricos , Fotones , Silicio , Factores de Tiempo
17.
Phys Med Biol ; 61(6): 2255-64, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26914187

RESUMEN

Coincidence time resolution (CTR), an important parameter for time-of-flight (TOF) PET performance, is determined mainly by properties of the scintillation crystal and photodetector used. Stable production techniques for LGSO:Ce (Lu1.8Gd0.2SiO5:Ce) with decay times varying from ∼ 30-40 ns have been established over the past decade, and the decay time can be accurately controlled with varying cerium concentration (0.025-0.075 mol%). This material is promising for TOF-PET, as it has similar light output and equivalent stopping power for 511 keV annihilation photons compared to industry standard LSO:Ce and LYSO:Ce, and the decay time is improved by more than 30% with proper Ce concentration. This work investigates the achievable CTR with LGSO:Ce (0.025 mol%) when coupled to new silicon photomultipliers. Crystal element dimension is another important parameter for achieving fast timing. 20 mm length crystal elements achieve higher 511 keV photon detection efficiency, but also introduce higher scintillation photon transit time variance. 3 mm length crystals are not practical for PET, but have reduced scintillation transit time spread. The CTR between pairs of 2.9 × 2.9 × 3 mm(3) and 2.9 × 2.9 × 20 mm(3) LGSO:Ce crystals was measured to be 80 ± 4 and 122 ± 4 ps FWHM, respectively. Measurements of light yield and intrinsic decay time are also presented for a thorough investigation into the timing performance with LGSO:Ce (0.025 mol%).


Asunto(s)
Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/métodos , Cerio/química , Límite de Detección , Fotones , Conteo por Cintilación/normas , Silicio/química
18.
Phys Med Biol ; 60(13): 5141-61, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26083559

RESUMEN

Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector's timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3 × 3 × 20 mm(3) LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162 ± 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%.


Asunto(s)
Interpretación de Imagen Asistida por Computador/instrumentación , Procesamiento de Imagen Asistido por Computador/instrumentación , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/métodos , Relación Señal-Ruido , Algoritmos , Simulación por Computador , Cristalización , Método de Montecarlo , Fotones , Conteo por Cintilación/instrumentación
19.
Phys Med Biol ; 59(20): 6215-29, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25255807

RESUMEN

In this work, a method is presented that can calculate the lower bound of the timing resolution for large scintillation crystals with non-negligible photon transport. Hereby, the timing resolution bound can directly be calculated from Monte Carlo generated arrival times of the scintillation photons. This method extends timing resolution bound calculations based on analytical equations, as crystal geometries can be evaluated that do not have closed form solutions of arrival time distributions. The timing resolution bounds are calculated for an exemplary 3 mm × 3 mm × 20 mm LYSO crystal geometry, with scintillation centers exponentially spread along the crystal length as well as with scintillation centers at fixed distances from the photosensor. Pulse shape simulations further show that analog photosensors intrinsically operate near the timing resolution bound, which can be attributed to the finite single photoelectron pulse rise time.


Asunto(s)
Algoritmos , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/métodos , Fotones , Tomografía de Emisión de Positrones/instrumentación , Conteo por Cintilación/instrumentación , Sensibilidad y Especificidad , Factores de Tiempo
20.
Appl Radiat Isot ; 70(8): 1485-93, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22728838

RESUMEN

The position-sensitive alpha-particle detector used to provide the starting time and initial direction of D-T neutrons in a fast-neutron imaging system was simulated with a Geant4-based Monte Carlo program. The whole detector system, which consists of a YAP:Ce scintillator, a fiber-optic faceplate, a light guide, and a position-sensitive photo-multiplier tube (PSPMT), was modeled, starting with incident D-T alphas. The scintillation photons, whose starting time follows the distribution of a scintillation decay curve, were produced and emitted uniformly into a solid angle of 4π along the track segments of the alpha and its secondaries. Through tracking all photons and taking into account the quantum efficiency of the photocathode, the number of photoelectrons and their time and position distributions were obtained. Using a four-corner data reconstruction formula, the flood images of the alpha detector with and without optical grease between the YAP scintillator and the fiber-optic faceplate were obtained, which show agreement with the experimental results. The reconstructed position uncertainties of incident alpha particles for both cases are 1.198 mm and 0.998 mm respectively across the sensitive area of the detector. Simulation results also show that comparing with other faceplates composed of 500 µm, 300 µm, and 100 µm fibers, the 10-µm-fiber faceplate is the best choice to build the detector for better position performance. In addition, the study of the background originating inside the D-T generator suggests that for 500-µm-thick YAP:Ce coated with 1-µm-thick aluminum, and very good signal-to-noise ratio can be expected through application of a simple threshold.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...