Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Physiol Educ ; 47(4): 910-918, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769043

RESUMEN

The development of science writing and presentation skills is necessary for a successful science career. Too often these skills are not included in pre- or postsecondary science, technology, engineering, and mathematics (STEM) education, leading to a disconnect between high schoolers' expectations for college preparedness and the skills needed to succeed in college. The Young Scientist Program Summer Focus recruits high school students from historically marginalized backgrounds to participate in 8-week summer internships at Washington University in St. Louis. Students conduct hands-on biomedical research projects under the mentorship of Washington University scientists (graduate students, postdoctorates, lab staff). Here, we present the curriculum for a science communication course that accompanies this early research experience. The course is designed to strengthen students' communication skills (critical reading, writing, presenting, and peer review) through a combination of weekly lectures and active learning methods. It prepares students for the capstone of their summer internship: writing a scientific paper and presenting their results at a closing symposium. We administered pre- and postprogram surveys to four Summer Focus cohorts to determine whether the course met its learning objectives. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data. Thus, this course provides a successful model for introducing science literacy and communication skills that are necessary for any career in STEM. We provide a detailed outline of the course structure and content so that this training can be incorporated into any undergraduate and graduate research programs.NEW & NOTEWORTHY Strong communication skills are necessary for a successful scientific career. Here, we describe the curriculum for a science communication course designed to accompany high school students participating in a summer biomedical research program. The course aims to improve their scientific literacy and communication skills. Students learn to read and understand scientific literature, write a paper about their summer research project, present their results, and provide feedback to peers. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data after completing the course. This successful model serves as a guide for students participating in their first research experience and provides the skills for success in future science, technology, engineering, and mathematics education and careers. The curriculum presented here can be easily adapted for any research program, including undergraduate summer research experiences and graduate student laboratory rotations.


Asunto(s)
Curriculum , Instituciones Académicas , Humanos , Estudiantes , Comunicación , Escritura
2.
bioRxiv ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37292658

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder that primarily affects elderly individuals, and is characterized by hallmark neuronal pathologies including extracellular amyloid-ß (Aß) plaque deposition, intracellular tau tangles, and neuronal death. However, recapitulating these age-associated neuronal pathologies in patient-derived neurons has remained a significant challenge, especially for late-onset AD (LOAD), the most common form of the disorder. Here, we applied the high efficiency microRNA-mediated direct neuronal reprogramming of fibroblasts from AD patients to generate cortical neurons in three-dimensional (3D) Matrigel and self-assembled neuronal spheroids. Our findings indicate that neurons and spheroids reprogrammed from both autosomal dominant AD (ADAD) and LOAD patients exhibited AD-like phenotypes linked to neurons, including extracellular Aß deposition, dystrophic neurites with hyperphosphorylated, K63-ubiquitin-positive, seed-competent tau, and spontaneous neuronal death in culture. Moreover, treatment with ß- or γ-secretase inhibitors in LOAD patient-derived neurons and spheroids before Aß deposit formation significantly lowered Aß deposition, as well as tauopathy and neurodegeneration. However, the same treatment after the cells already formed Aß deposits only had a mild effect. Additionally, inhibiting the synthesis of age-associated retrotransposable elements (RTEs) by treating LOAD neurons and spheroids with the reverse transcriptase inhibitor, lamivudine, alleviated AD neuropathology. Overall, our results demonstrate that direct neuronal reprogramming of AD patient fibroblasts in a 3D environment can capture age-related neuropathology and reflect the interplay between Aß accumulation, tau dysregulation, and neuronal death. Moreover, miRNA-based 3D neuronal conversion provides a human-relevant AD model that can be used to identify compounds that can potentially ameliorate AD-associated pathologies and neurodegeneration.

3.
Nat Neurosci ; 25(11): 1420-1433, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36303071

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder with adult-onset clinical symptoms, but the mechanism by which aging drives the onset of neurodegeneration in patients with HD remains unclear. In this study we examined striatal medium spiny neurons (MSNs) directly reprogrammed from fibroblasts of patients with HD to model the age-dependent onset of pathology. We found that pronounced neuronal death occurred selectively in reprogrammed MSNs from symptomatic patients with HD (HD-MSNs) compared to MSNs derived from younger, pre-symptomatic patients (pre-HD-MSNs) and control MSNs from age-matched healthy individuals. We observed age-associated alterations in chromatin accessibility between HD-MSNs and pre-HD-MSNs and identified miR-29b-3p, whose age-associated upregulation promotes HD-MSN degeneration by impairing autophagic function through human-specific targeting of the STAT3 3' untranslated region. Reducing miR-29b-3p or chemically promoting autophagy increased the resilience of HD-MSNs against neurodegeneration. Our results demonstrate miRNA upregulation with aging in HD as a detrimental process driving MSN degeneration and potential approaches for enhancing autophagy and resilience of HD-MSNs.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Humanos , Animales , Enfermedad de Huntington/patología , Cuerpo Estriado/fisiología , Neuronas/fisiología , Autofagia , MicroARNs/genética , Progresión de la Enfermedad , Modelos Animales de Enfermedad
4.
Methods Mol Biol ; 2239: 77-100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33226614

RESUMEN

MicroRNAs (miRNAs), miR-9/9*, and miR-124 (miR-9/9*-124) display fate-reprogramming activities when ectopically expressed in human fibroblasts by erasing the fibroblast identity and evoking a pan-neuronal state. In contrast to induced pluripotent stem cell-derived neurons, miRNA-induced neurons (miNs) retain the biological age of the starting fibroblasts through direct fate conversion and thus provide a human neuron-based platform to study cellular properties inherent in aged neurons and model adult-onset neurodegenerative disorders using patient-derived cells. Furthermore, expression of neuronal subtype-specific transcription factors in conjunction with miR-9/9*-124 guides the miNs to distinct neuronal fates, a feature critical for modeling disorders that affect specific neuronal subtypes. Here, we describe the miR-9/9*-124-based neuronal reprogramming protocols for the generation of several disease-relevant neuronal subtypes: striatal medium spiny neurons, cortical neurons, and spinal cord motor neurons.


Asunto(s)
Reprogramación Celular/genética , MicroARNs/metabolismo , Neuronas Motoras/citología , Neurogénesis/genética , Factores de Transcripción/metabolismo , Línea Celular , Células Cultivadas , Senescencia Celular/genética , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Medios de Cultivo/química , Fibroblastos/citología , Fibroblastos/metabolismo , Vectores Genéticos , Humanos , Lentivirus/genética , MicroARNs/genética , Neuronas Motoras/metabolismo , Neuronas/citología , Neuronas/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Factores de Transcripción/genética
5.
Cell Stem Cell ; 28(1): 127-140.e9, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32961143

RESUMEN

Cell-fate conversion generally requires reprogramming effectors to both introduce fate programs of the target cell type and erase the identity of starting cell population. Here, we reveal insights into the activity of microRNAs miR-9/9∗ and miR-124 (miR-9/9∗-124) as reprogramming agents that orchestrate direct conversion of human fibroblasts into motor neurons by first eradicating fibroblast identity and promoting uniform transition to a neuronal state in sequence. We identify KLF-family transcription factors as direct target genes for miR-9/9∗-124 and show their repression is critical for erasing fibroblast fate. Subsequent gain of neuronal identity requires upregulation of a small nuclear RNA, RN7SK, which induces accessibilities of chromatin regions and neuronal gene activation to push cells to a neuronal state. Our study defines deterministic components in the microRNA-mediated reprogramming cascade.


Asunto(s)
MicroARNs , Diferenciación Celular , Reprogramación Celular/genética , Cromatina , Fibroblastos , Humanos , MicroARNs/genética , Factores de Transcripción/genética
6.
Sci Rep ; 10(1): 10150, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576878

RESUMEN

ATAC-seq is widely used to measure chromatin accessibility and identify open chromatin regions (OCRs). OCRs usually indicate active regulatory elements in the genome and are directly associated with the gene regulatory network. The identification of differential accessibility regions (DARs) between different biological conditions is critical in determining the differential activity of regulatory elements. Differential analysis of ATAC-seq shares many similarities with differential expression analysis of RNA-seq data. However, the distribution of ATAC-seq signal intensity is different from that of RNA-seq data, and higher sensitivity is required for DARs identification. Many different tools can be used to perform differential analysis of ATAC-seq data, but a comprehensive comparison and benchmarking of these methods is still lacking. Here, we used simulated datasets to systematically measure the sensitivity and specificity of six different methods. We further discussed the statistical and signal density cut-offs in the differential analysis of ATAC-seq by applying them to real data. Batch effects are very common in high-throughput sequencing experiments. We illustrated that batch-effect correction can dramatically improve sensitivity in the differential analysis of ATAC-seq data. Finally, we developed a user-friendly package, BeCorrect, to perform batch effect correction and visualization of corrected ATAC-seq signals in a genome browser.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Cromatina/genética , Redes Reguladoras de Genes/genética , Bases de Datos de Ácidos Nucleicos , Conjuntos de Datos como Asunto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Sensibilidad y Especificidad
7.
J Biol Chem ; 293(18): 6844-6858, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29540473

RESUMEN

The human T-cell leukemia virus-1 (HTLV-1) oncoprotein Tax drives cell proliferation and resistance to apoptosis early in the pathogenesis of adult T-cell leukemia (ATL). Subsequently, probably as a result of specific immunoediting, Tax expression is down-regulated and functionally replaced by somatic driver mutations of the host genome. Both amplification and point mutations of interferon regulatory factor 4 (IRF4) have been previously detected in ATL., K59R is the most common single-nucleotide variation of IRF4 and is found exclusively in ATL. High-throughput whole-exome sequencing revealed recurrent activating genetic alterations in the T-cell receptor, CD28, and NF-κB pathways. We found that IRF4, which is transcriptionally activated downstream of these pathways, is frequently mutated in ATL. IRF4 RNA, protein, and IRF4 transcriptional targets are uniformly elevated in HTLV-1-transformed cells and ATL cell lines, and IRF4 was bound to genomic regulatory DNA of many of these transcriptional targets in HTLV-1-transformed cell lines. We further noted that the K59R IRF4 mutant is expressed at higher levels in the nucleus than WT IRF4 and is transcriptionally more active. Expression of both WT and the K59R mutant of IRF4 from a constitutive promoter in retrovirally transduced murine bone marrow cells increased the abundance of T lymphocytes but not myeloid cells or B lymphocytes in mice. IRF4 may represent a therapeutic target in ATL because ATL cells select for a mutant of IRF4 with higher nuclear expression and transcriptional activity, and overexpression of IRF4 induces the expansion of T lymphocytes in vivo.


Asunto(s)
Factores Reguladores del Interferón/genética , Leucemia-Linfoma de Células T del Adulto/genética , Mutación , Adulto , Animales , Apoptosis , Antígenos CD28/genética , Antígenos CD28/metabolismo , Núcleo Celular/metabolismo , Transformación Celular Viral , Citosol/metabolismo , ADN/metabolismo , Dimerización , Técnicas de Silenciamiento del Gen , Productos del Gen tax/genética , Productos del Gen tax/fisiología , Células HEK293 , Virus Linfotrópico T Tipo 1 Humano/fisiología , Humanos , Factores Reguladores del Interferón/metabolismo , Células Jurkat , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/citología , Transcripción Genética , Regulación hacia Arriba , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...