Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 42(1): 317, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008717

RESUMEN

BACKGROUND: BRAF-mutant melanoma patients benefit from the combinatorial treatments with BRAF and MEK inhibitors. However, acquired drug resistance strongly limits the efficacy of these targeted therapies in time. Recently, many findings have underscored the involvement of microRNAs as main drivers of drug resistance. In this context, we previously identified a subset of oncomiRs strongly up-regulated in drug-resistant melanomas. In this work, we shed light on the molecular role of two as yet poorly characterized oncomiRs, miR-4443 and miR-4488. METHODS: Invasion and migration have been determined by wound healing, transwell migration/invasion assays and Real Time Cell Analysis (RTCA) technology. miR-4488 and miR-4443 have been measured by qRT-PCR. Nestin levels have been tested by western blot, confocal immunofluorescence, immunohistochemical and flow cytometry analyses. RESULTS: We demonstrate that the two oncomiRs are responsible for the enhanced migratory and invasive phenotypes, that are a hallmark of drug resistant melanoma cells. Moreover, miR-4443 and miR-4488 promote an aberrant cytoskeletal reorganization witnessed by the increased number of stress fibers and cellular protrusions-like cancer cell invadopodia. Mechanistically, we identified the intermediate filament nestin as a molecular target of both oncomiRs. Finally, we have shown that nestin levels are able to predict response to treatments in melanoma patients. CONCLUSIONS: Altogether these findings have profound translational implications in the attempt i) to develop miRNA-targeting therapies to mitigate the metastatic phenotypes of BRAF-mutant melanomas and ii) to identify novel biomarkers able to guide clinical decisions.


Asunto(s)
Melanoma , MicroARNs , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Filamentos Intermedios/metabolismo , Filamentos Intermedios/patología , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , MicroARNs/metabolismo , Nestina/genética , Nestina/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
2.
Oncogene ; 42(4): 293-307, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36418472

RESUMEN

BRAF-mutated melanoma relapsing after targeted therapies is an aggressive disease with unmet clinical need. Hence the need to identify novel combination therapies able to overcome drug resistance. miRNAs have emerged as orchestrators of non-genetic mechanisms adopted by melanoma cells to challenge therapies. In this context we previously identified a subset of oncosuppressor miRNAs downregulated in drug-resistant melanomas. Here we demonstrate that lipid nanoparticles co-encapsulating two of them, miR-199-5p and miR-204-5p, inhibit tumor growth both in vitro and in vivo in combination with target therapy and block the development of drug resistance. Mechanistically they act by directly reducing melanoma cell growth and also indirectly by hampering the recruitment and reprogramming of pro-tumoral macrophages. Molecularly, we demonstrate that the effects on macrophages are mediated by the dysregulation of a newly identified miR-204-5p-miR-199b-5p/CCL5 axis. Finally, we unveiled that M2 macrophages programs are molecular signatures of resistance and predict response to therapy in patients. Overall, these findings have strong translational implications to propose new combination therapies making use of RNA therapeutics for metastatic melanoma patients.


Asunto(s)
Melanoma , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a Antineoplásicos/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Melanoma/genética , Línea Celular Tumoral
3.
Cancer Biol Med ; 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34018387

RESUMEN

OBJECTIVE: Bone metastasis is a clinically important outcome of prostate carcinoma (PC). We focused on the phenotypic and functional characterization of a particularly aggressive phenotype within the androgen-independent bone metastasis-derived PC3 cell line. These cells, originated from the spontaneous conversion of a CD44-negative subpopulation, stably express the CD44v8-10 isoform (CD44v8-10pos) and display stem cell-like features and a marked invasive phenotype in vitro that is lost upon CD44v8-10 silencing. METHODS: Flow cytometry, enzyme-linked immunoassay, immunofluorescence, and Western blot were used for phenotypic and immunologic characterization. Real-time quantitative polymerase chain reaction and functional assays were used to assess osteomimicry. RESULTS: Analysis of epithelial-mesenchymal transition markers showed that CD44v8-10pos PC3 cells surprisingly display epithelial phenotype and can undergo osteomimicry, acquiring bone cell phenotypic and behavioral traits. Use of specific siRNA evidenced the ability of CD44v8-10 variant to confer osteomimetic features, hence the potential to form bone-specific metastasis. Moreover, the ability of tumors to activate immunosuppressive mechanisms which counteract effective immune responses is a sign of the aggressiveness of a tumor. Here we report that CD44v8-10pos cells express programmed death ligand 1, a negative regulator of anticancer immunity, and secrete exceptionally high amounts of interleukin-6, favoring osteoclastogenesis and immunosuppression in bone microenvironment. Notably, we identified a novel pathway activated by CD44v8-10, involving tafazzin (TAZ) and likely the Wnt/TAZ axis, known to play a role in upregulating osteomimetic genes. CONCLUSIONS: CD44v8-10 could represent a marker of a more aggressive bone metastatic PC population exerting a driver role in osteomimicry in bone. A novel link between TAZ and CD44v8-10 is also shown.

4.
Front Oncol ; 11: 645069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816298

RESUMEN

Metastatic melanoma is the deadliest form of skin cancer whose incidence has been rising dramatically over the last few decades. Nowadays, the most successful approach in treating advanced melanoma is immunotherapy which encompasses the use of immune checkpoint blockers able to unleash the immune system's activity against tumor cells. Immunotherapy has dramatically changed clinical practice by contributing to increasing long term overall survival. Despite these striking therapeutic effects, the clinical benefits are strongly mitigated by innate or acquired resistance. In this context, it is of utmost importance to develop methods capable of predicting patient response to immunotherapy. To this purpose, one major step forward may be provided by measuring non-invasive biomarkers in human fluids, namely Liquid Biopsies (LBs). Several LB approaches have been developed over the last few years thanks to technological breakthroughs that have allowed to evaluate circulating components also when they are present in low abundance. The elements of this so-called "circulome" mostly encompass: tumor DNA, tumor and immune cells, soluble factors and non-coding RNAs. Here, we review the current knowledge of these molecules as predictors of response to immunotherapy in metastatic melanoma and predict that LB will soon enter into routine practice in order to guide clinical decisions for cancer immunotherapy.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32266249

RESUMEN

The complex and highly organized environment in which cells reside consists primarily of the extracellular matrix (ECM) that delivers biological signals and physical stimuli to resident cells. In the native myocardium, the ECM contributes to both heart compliance and cardiomyocyte maturation and function. Thus, myocardium regeneration cannot be accomplished if cardiac ECM is not restored. We hypothesize that decellularized human skin might make an easily accessible and viable alternate biological scaffold for cardiac tissue engineering (CTE). To test our hypothesis, we decellularized specimens of both human skin and human myocardium and analyzed and compared their composition by histological methods and quantitative assays. Decellularized dermal matrix was then cut into 600-µm-thick sections and either tested by uniaxial tensile stretching to characterize its mechanical behavior or used as three-dimensional scaffold to assess its capability to support regeneration by resident cardiac progenitor cells (hCPCs) in vitro. Histological and quantitative analyses of the dermal matrix provided evidence of both effective decellularization with preserved tissue architecture and retention of ECM proteins and growth factors typical of cardiac matrix. Further, the elastic modulus of the dermal matrix resulted comparable with that reported in literature for the human myocardium and, when tested in vitro, dermal matrix resulted a comfortable and protective substrate promoting and supporting hCPC engraftment, survival and cardiomyogenic potential. Our study provides compelling evidence that dermal matrix holds promise as a fully autologous and cost-effective biological scaffold for CTE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...