Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Ecol Lett ; 27(2): e14386, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403295

RESUMEN

Outbreaks and spread of infectious diseases are often associated with seasonality and environmental changes, including global warming. Free-living stages of soil-transmitted helminths are highly susceptible to climatic drivers; however, how multiple climatic variables affect helminth species, and the long-term consequences of these interactions, is poorly understood. We used experiments on nine trichostrongylid species of herbivores to develop a temperature- and humidity-dependent model of infection hazard, which was then implemented at the European scale under climate change scenarios. Intestinal and stomach helminths exhibited contrasting climatic responses, with the former group strongly affected by temperature while the latter primarily impacted by humidity. Among the demographic traits, larval survival heavily modulated the infection hazard. According to the specific climatic responses of the two groups, climate change is expected to generate differences in the seasonal and spatial shifts of the infection hazard and group co-circulation. In the future, an intensification of these trends could create new opportunities for species range expansion and co-occurrence at European central-northern latitudes.


Asunto(s)
Cambio Climático , Helmintos , Animales , Calentamiento Global , Larva
2.
Parasit Vectors ; 17(1): 73, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374048

RESUMEN

BACKGROUND: Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. METHODS: Here, we examine single and co-infection of Mayaro virus (D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27 °C) and hot (32 °C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. RESULTS: Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes with a tendency for higher titers in co-infected mosquitoes at both temperatures, and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs. single infections and was more evident at earlier time points (7 vs. 14 days post infection) for Mayaro. The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. CONCLUSIONS: Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses. However, more studies are necessary to clarify the role of co-infection at different temperature regimes, including under more natural temperature settings.


Asunto(s)
Aedes , Alphavirus , Coinfección , Virus del Dengue , Dengue , Flavivirus , Animales , Humanos , Temperatura , Mosquitos Vectores , Alphavirus/genética , Flavivirus/genética
3.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37292724

RESUMEN

Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. Here, we examine single and co-infection of Mayaro virus (-D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27°C) and hot (32°C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes, with a tendency for higher titers in co-infected mosquitoes at both temperatures and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs single infections and was more evident at earlier timepoints (7 vs 14 days post infection). The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses, but further studies are necessary to clarify the role of co-infection at different and variable temperature regimes.

4.
Math Biosci ; 360: 109010, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37088125

RESUMEN

Within-host models of infection can provide important insights into the processes that affect parasite spread and persistence in host populations. However, modeling can be limited by the availability of empirical data, a problem commonly encountered in natural systems. Here, we used six years of immune-infection observations of two gastrointestinal helminths (Trichostrongylus retortaeformis and Graphidium strigosum) from a population of European rabbits (Oryctolagus cuniculus) to develop an age-dependent, mathematical model that explicitly included species-specific and cross-reacting antibody (IgA and IgG) responses to each helminth in hosts with single or dual infections. Different models of single infection were formally compared to test alternative mechanisms of parasite regulation. The two models that best described single infections of each helminth species were then coupled through antibody cross-immunity to examine how the presence of one species could alter the host immune response to, and the within-host dynamics of, the other species. For both single infections, model selection suggested that either IgA or IgG responses could equally explain the observed parasite intensities by host age. However, the antibody attack rate and affinity level changed between the two helminths, it was stronger against T. retortaeformis than against G. strigosum and caused contrasting age-intensity profiles. When the two helminths coinfect the same host, we found variation of the species-specific antibody response to both species together with an asymmetric cross-immune response driven by IgG. Lower attack rate and affinity of antibodies in dual than single infections contributed to the significant increase of both helminth intensities. By combining mathematical modeling with immuno-infection data, our work provides a tractable model framework for disentangling some of the complexities generated by host-parasite and parasite-parasite interactions in natural systems.


Asunto(s)
Helmintos , Animales , Conejos , Incidencia , Helmintos/fisiología , Inmunoglobulina G , Inmunoglobulina A , Interacciones Huésped-Parásitos
5.
J Anim Ecol ; 92(2): 477-491, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478135

RESUMEN

The conceptual understanding of immune-mediated interactions between parasites is rooted in the theory of community ecology. One of the limitations of this approach is that most of the theory and empirical evidence has focused on resource or immune-mediated competition between parasites and yet there is ample evidence of positive interactions that could be generated by immune-mediated facilitation. We developed an immuno-epidemiological model and applied it to long-term data of two gastrointestinal helminths in two rabbit populations to investigate, through model testing, how immune-mediated mechanisms of parasite regulation could explain the higher intensities of both helminths in rabbits with dual than single infections. The model framework was selected and calibrated on rabbit population A and then validated on the nearby rabbit population B to confirm the consistency of the findings and the generality of the mechanisms. Simulations suggested that the higher intensities in rabbits with dual infections could be explained by a weakened or low species-specific IgA response and an asymmetric IgA cross-reaction. Simulations also indicated that rabbits with dual infections shed more free-living stages that survived for longer in the environment, implying greater transmission than stages from hosts with single infections. Temperature and humidity selectively affected the free-living stages of the two helminths. These patterns were comparable in the two rabbit populations and support the hypothesis that immune-mediated facilitation can contribute to greater parasite fitness and local persistence.


Asunto(s)
Helmintos , Parásitos , Animales , Conejos , Helmintos/fisiología , Tracto Gastrointestinal , Inmunoglobulina A , Interacciones Huésped-Parásitos
6.
Elife ; 112022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346138

RESUMEN

Co-infected hosts, individuals that carry more than one infectious agent at any one time, have been suggested to facilitate pathogen transmission, including the emergence of supershedding events. However, how the host immune response mediates the interactions between co-infecting pathogens and how these affect the dynamics of shedding remains largely unclear. We used laboratory experiments and a modeling approach to examine temporal changes in the shedding of the respiratory bacterium Bordetella bronchiseptica in rabbits with one or two gastrointestinal helminth species. Experimental data showed that rabbits co-infected with one or both helminths shed significantly more B. bronchiseptica, by direct contact with an agar petri dish, than rabbits with bacteria alone. Co-infected hosts generated supershedding events of higher intensity and more frequently than hosts with no helminths. To explain this variation in shedding an infection-immune model was developed and fitted to rabbits of each group. Simulations suggested that differences in the magnitude and duration of shedding could be explained by the effect of the two helminths on the relative contribution of neutrophils and specific IgA and IgG to B. bronchiseptica neutralization in the respiratory tract. However, the interactions between infection and immune response at the scale of analysis that we used could not capture the rapid variation in the intensity of shedding of every rabbit. We suggest that fast and local changes at the level of respiratory tissue probably played a more important role. This study indicates that co-infected hosts are important source of variation in shedding, and provides a quantitative explanation into the role of helminths to the dynamics of respiratory bacterial infections.


Asunto(s)
Infecciones por Bordetella , Bordetella bronchiseptica , Helmintos , Infecciones del Sistema Respiratorio , Animales , Conejos , Infecciones por Bordetella/microbiología , Infecciones del Sistema Respiratorio/microbiología , Sistema Respiratorio
7.
J Virol ; 96(20): e0088622, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36197107

RESUMEN

To characterize the ongoing evolution of myxoma virus in Australian rabbits, we used experimental infections of laboratory rabbits to determine the virulence and disease phenotypes of recent virus isolates. The viruses, collected between 2012 and 2015, fell into three lineages, one of which, lineage c, experienced a punctuated increase in evolutionary rate. All viruses were capable of causing acute death with aspects of neutropenic septicemia, characterized by minimal signs of myxomatosis, the occurrence of pulmonary edema and bacteria invasions throughout internal organs, but with no inflammatory response. For the viruses of highest virulence all rabbits usually died at this point. In more attenuated viruses, some rabbits died acutely, while others developed an amyxomatous phenotype. Rabbits that survived for longer periods developed greatly swollen cutaneous tissues with very high virus titers. This was particularly true of lineage c viruses. Unexpectedly, we identified a line of laboratory rabbits with some innate resistance to myxomatosis and used these in direct comparisons with the fully susceptible rabbit line. Importantly, the same disease phenotype occurred in both susceptible and resistant rabbits, although virulence was shifted toward more attenuated grades in resistant animals. We propose that selection against inflammation at cutaneous sites prolongs virus replication and enhances transmission, leading to the amyxomatous phenotype. In some virus backgrounds this creates an immunosuppressive state that predisposes to high virulence and acute death. The alterations in disease pathogenesis, particularly the overwhelming bacterial invasions that characterize the modern viruses, suggest that their virulence grades are not directly comparable with earlier studies. IMPORTANCE The evolution of the myxoma virus (MYXV) following its release as a biological control for European rabbits in Australia is the textbook example of the coevolution of virus virulence and host resistance. However, most of our knowledge of MYXV evolution only covers the first few decades of its spread in Australia and often with little direct connection between how changes in virus phenotype relate to those in the underlying virus genotype. By conducting detailed experimental infections of recent isolates of MYXV in different lines of laboratory rabbits, we examined the ongoing evolution of MYXV disease phenotypes. Our results reveal a wide range of phenotypes, including an amyxomatous type, as well as the impact of invasive bacteria, that in part depended on the level of rabbit host resistance. These results provide a unique insight into the complex virus and host factors that combine to shape disease phenotype and viral evolution.


Asunto(s)
Myxoma virus , Mixomatosis Infecciosa , Animales , Conejos , Virulencia/genética , Australia , Fenotipo , Genotipo , Mixomatosis Infecciosa/genética
8.
J Anim Ecol ; 91(5): 912-915, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35509202

RESUMEN

Research Highlight: Lunn, T. J., Peel, A. J., Eby, P., Brooks, R., Plowright, R. K., Kessler, M. K., & McCallum, H. (2021). Counterintuitive scaling between population abundance and local density: Implications for modelling transmission of infectious diseases in bat populations. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13634. Quantifying the transmission of an infectious disease is often difficult and for natural animal systems it can be a major challenge. Animals move over time and space changing their degree of aggregation and rate of contact, which, in turn, affects the risk of infection and the onward spread of the pathogen. Capturing the fundamentals of these processes requires the identification of both the correct spatial scale at which the processes take place and what constitutes a meaningful host population unit. Lunn et al. collected data on the gregarious Pteropus (flying foxes) bats from roost sites in Australia and investigated whether total bat abundance at the roost level, the spatial scale commonly used to model pathogen spread in bat populations, was representative of bat measurements at the tree level, the scale at which pathogen transmission between bats most likely occurs. Their findings showed that bat population measurements at the sub-plot level were strong predictors for potential transmission at the tree scale, while roost-level measurements were less robust. This study suggests that bat abundance at roost is inadequate to capture the gregarious structure of bat populations and the fundamental processes of transmission at lower scale.


Asunto(s)
Quirópteros , Animales , Australia , Árboles
9.
Sci Rep ; 11(1): 14876, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290271

RESUMEN

Meat from wildlife species (bushmeat) represents a major source of dietary protein in low- and middle-income countries where humans and wildlife live in close proximity. Despite the occurrence of zoonotic pathogens in wildlife, their prevalence in bushmeat remains unknown. To assess the risk of exposure to major pathogens in bushmeat, a total of 3784 samples, both fresh and processed, were collected from three major regions in Tanzania during both rainy and dry seasons, and were screened by real-time PCR for the presence of DNA signatures of Bacillus anthracis (B. anthracis), Brucella spp. (Brucella) and Coxiella burnetii (Coxiella). The analysis identified DNA signatures of B. anthracis (0.48%), Brucella (0.9%), and Coxiella (0.66%) in a total of 77 samples. Highest prevalence rates of B. anthracis, Brucella, and Coxiella were observed in wildebeest (56%), dik-dik (50%), and impala (24%), respectively. Fresh samples, those collected during the rainy season, and samples from Selous or Serengeti had a greater relative risk of being positive. Microbiome characterization identified Firmicutes and Proteobacteria as the most abundant phyla. The results highlight and define potential risks of exposure to endemic wildlife diseases from bushmeat and the need for future investigations to address the public health and emerging infectious disease risks associated with bushmeat harvesting, trade, and consumption.


Asunto(s)
Bacillus anthracis/genética , Zoonosis Bacterianas/microbiología , Zoonosis Bacterianas/transmisión , Brucella/genética , Coxiella burnetii/genética , ADN Bacteriano/análisis , Microbiología de Alimentos , Carne/microbiología , Animales , Animales Salvajes , Bacillus anthracis/aislamiento & purificación , Zoonosis Bacterianas/prevención & control , Brucella/aislamiento & purificación , Coxiella burnetii/aislamiento & purificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Riesgo , Estaciones del Año , Tanzanía
10.
PLoS Comput Biol ; 16(11): e1008438, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33226981

RESUMEN

Variation in the intensity and duration of infections is often driven by variation in the network and strength of host immune responses. While many of the immune mechanisms and components are known for parasitic helminths, how these relationships change from single to multiple infections and impact helminth dynamics remains largely unclear. Here, we used laboratory data from a rabbit-helminth system and developed a within-host model of infection to investigate different scenarios of immune regulation in rabbits infected with one or two helminth species. Model selection suggests that the immunological pathways activated against Trichostrongylus retortaeformis and Graphidium strigosum are similar. However, differences in the strength of these immune signals lead to the contrasting dynamics of infections, where the first parasite is rapidly cleared and the latter persists with high intensities. In addition to the reactions identified in single infections, rabbits with both helminths also activate new pathways that asymmetrically affect the dynamics of the two species. These new signals alter the intensities but not the general trend of the infections. The type of interactions described can be expected in many other host-helminth systems. Our immune framework is flexible enough to capture different mechanisms and their complexity, and provides essential insights to the understanding of multi-helminth infections.


Asunto(s)
Interacciones Huésped-Parásitos/inmunología , Modelos Inmunológicos , Tricostrongiloidiasis/inmunología , Tricostrongiliasis/inmunología , Animales , Coinfección/inmunología , Coinfección/parasitología , Biología Computacional , Simulación por Computador , Modelos Animales de Enfermedad , Modelos Lineales , Probabilidad , Conejos , Especificidad de la Especie , Trichostrongyloidea/inmunología , Trichostrongyloidea/parasitología , Tricostrongiloidiasis/complicaciones , Tricostrongiloidiasis/parasitología , Tricostrongiliasis/complicaciones , Tricostrongiliasis/parasitología , Trichostrongylus/inmunología , Trichostrongylus/parasitología
11.
J Clin Invest ; 130(12): 6728-6738, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910806

RESUMEN

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the urgent need for assays that detect protective levels of neutralizing antibodies. We studied the relationship among anti-spike ectodomain (anti-ECD), anti-receptor-binding domain (anti-RBD) IgG titers, and SARS-CoV-2 virus neutralization (VN) titers generated by 2 in vitro assays using convalescent plasma samples from 68 patients with COVID-19. We report a strong positive correlation between both plasma anti-RBD and anti-ECD IgG titers and in vitro VN titers. The probability of a VN titer of ≥160, the FDA-recommended level for convalescent plasma used for COVID-19 treatment, was ≥80% when anti-RBD or anti-ECD titers were ≥1:1350. Of all donors, 37% lacked VN titers of ≥160. Dyspnea, hospitalization, and disease severity were significantly associated with higher VN titer. Frequent donation of convalescent plasma did not significantly decrease VN or IgG titers. Analysis of 2814 asymptomatic adults found 73 individuals with anti-ECD IgG titers of ≥1:50 and strong positive correlation with anti-RBD and VN titers. Fourteen of these individuals had VN titers of ≥1:160, and all of them had anti-RBD titers of ≥1:1350. We conclude that anti-RBD or anti-ECD IgG titers can serve as a surrogate for VN titers to identify suitable plasma donors. Plasma anti-RBD or anti-ECD titers of ≥1:1350 may provide critical information about protection against COVID-19 disease.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Inmunoglobulina G , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/administración & dosificación , Anticuerpos Antivirales/sangre , Femenino , Humanos , Inmunización Pasiva , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Sueroterapia para COVID-19
12.
PLoS One ; 15(9): e0237590, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32925949

RESUMEN

Bushmeat harvesting and consumption represents a potential risk for the spillover of endemic zoonotic pathogens, yet remains a common practice in many parts of the world. Given that the harvesting and selling of bushmeat is illegal in Tanzania and other parts of Africa, the supply chain is informal and may include hunters, whole-sellers, retailers, and individual resellers who typically sell bushmeat in small pieces. These pieces are often further processed, obscuring species-identifying morphological characteristics, contributing to incomplete or mistaken knowledge of species of origin and potentially confounding assessments of pathogen spillover risk and bushmeat offtake. The current investigation sought to identify the species of origin and assess the concordance between seller-reported and laboratory-confirmed species of origin of bushmeat harvested from in and around the Serengeti National Park in Tanzania. After obtaining necessary permits, the species of origin of a total of 151 bushmeat samples purchased from known intermediaries from 2016 to 2018 were characterized by PCR and sequence analysis of the cytochrome B (CytB) gene. Based on these sequence analyses, 30%, 95% Confidence Interval (CI: 24.4-38.6) of bushmeat samples were misidentified by sellers. Misreporting amongst the top five source species (wildebeest, buffalo, impala, zebra, and giraffe) ranged from 20% (CI: 11.4-33.2) for samples reported as wildebeest to 47% (CI: 22.2-72.7) for samples reported as zebra although there was no systematic bias in reporting. Our findings suggest that while misreporting errors are unlikely to confound wildlife offtake estimates for bushmeat consumption within the Serengeti ecosystem, the role of misreporting bias on the risk of spillover events of endemic zoonotic infections from bushmeat requires further investigation.


Asunto(s)
Animales Salvajes , Carne/provisión & distribución , Zoonosis/etiología , Animales , Animales Salvajes/genética , Búfalos/genética , Comercio , Citocromos b/genética , Ecosistema , Equidae/genética , Jirafas/genética , Humanos , Parques Recreativos , Tanzanía/epidemiología
13.
Viruses ; 12(9)2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32847058

RESUMEN

Peste des petits ruminants virus (PPRV) causes an infectious disease of high morbidity and mortality among sheep and goats which impacts millions of livestock keepers globally. PPRV transmission risk varies by production system, but a deeper understanding of how transmission scales in these systems and which husbandry practices impact risk is needed. To investigate transmission scaling and husbandry practice-associated risk, this study combined 395 household questionnaires with over 7115 cross-sectional serosurvey samples collected in Tanzania among agropastoral and pastoral households managing sheep, goats, or cattle (most managed all three, n = 284, 71.9%). Although self-reported compound-level herd size was significantly larger in pastoral than agropastoral households, the data show no evidence that household herd force of infection (FOI, per capita infection rate of susceptible hosts) increased with herd size. Seroprevalence and FOI patterns observed at the sub-village level showed significant spatial variation in FOI. Univariate analyses showed that household herd FOI was significantly higher when households reported seasonal grazing camp attendance, cattle or goat introduction to the compound, death, sale, or giving away of animals in the past 12 months, when cattle were grazed separately from sheep and goats, and when the household also managed dogs or donkeys. Multivariable analyses revealed that species, production system type, and goat or sheep introduction or seasonal grazing camp attendance, cattle or goat death or sales, or goats given away in the past 12 months significantly increased odds of seroconversion, whereas managing pigs or cattle attending seasonal grazing camps had significantly lower odds of seroconversion. Further research should investigate specific husbandry practices across production systems in other countries and in systems that include additional atypical host species to broaden understanding of PPRV transmission.


Asunto(s)
Crianza de Animales Domésticos/métodos , Peste de los Pequeños Rumiantes/transmisión , Virus de la Peste de los Pequeños Rumiantes/aislamiento & purificación , Crianza de Animales Domésticos/estadística & datos numéricos , Animales , Bovinos , Estudios Transversales , Cabras , Peste de los Pequeños Rumiantes/epidemiología , Virus de la Peste de los Pequeños Rumiantes/inmunología , Densidad de Población , Riesgo , Estudios Seroepidemiológicos , Ovinos , Tanzanía/epidemiología
14.
bioRxiv ; 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32577662

RESUMEN

Newly emerged pathogens such as SARS-CoV-2 highlight the urgent need for assays that detect levels of neutralizing antibodies that may be protective. We studied the relationship between anti-spike ectodomain (ECD) and anti-receptor binding domain (RBD) IgG titers, and SARS-CoV-2 virus neutralization (VN) titers generated by two different in vitro assays using convalescent plasma samples obtained from 68 COVID-19 patients, including 13 who donated plasma multiple times. Only 23% (16/68) of donors had been hospitalized. We also studied 16 samples from subjects found to have anti-spike protein IgG during surveillance screening of asymptomatic individuals. We report a strong positive correlation between both plasma anti-RBD and anti-ECD IgG titers, and in vitro VN titer. Anti-RBD plasma IgG correlated slightly better than anti-ECD IgG titer with VN titer. The probability of a VN titer ≥160 was 80% or greater with anti-RBD or anti-ECD titers of ≥1:1350. Thirty-seven percent (25/68) of convalescent plasma donors lacked VN titers ≥160, the FDA-recommended level for convalescent plasma used for COVID-19 treatment. Dyspnea, hospitalization, and disease severity were significantly associated with higher VN titer. Frequent donation of convalescent plasma did not significantly decrease either VN or IgG titers. Analysis of 2,814 asymptomatic adults found 27 individuals with anti-RBD or anti-ECD IgG titers of ≥1:1350, and evidence of VN ≥1:160. Taken together, we conclude that anti-RBD or anti-ECD IgG titers can serve as a surrogate for VN titers to identify suitable plasma donors. Plasma anti-RBD or anti-ECD titer of ≥1:1350 may provide critical information about protection against COVID-19 disease.

15.
Sci Rep ; 9(1): 18086, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792246

RESUMEN

Bushmeat, the meat and organs derived from wildlife species, is a common source of animal protein in the diets of those living in sub-Saharan Africa and is frequently associated with zoonotic spillover of dangerous pathogens. Given the frequent consumption of bushmeat in this region and the lack of knowledge about the microbial communities associated with this meat, the microbiome of 56 fresh and processed bushmeat samples ascertained from three districts in the Western Serengeti ecosystem in Tanzania was characterized using 16S rRNA metagenomic sequencing. The results show that the most abundant phyla present in bushmeat samples include Firmicutes (67.8%), Proteobacteria (18.4%), Cyanobacteria (8.9%), and Bacteroidetes (3.1%). Regardless of wildlife species, sample condition, season, or region, the microbiome is diverse across all samples, with no significant difference in alpha or beta diversity. The findings also suggest the presence of DNA signatures of potentially dangerous zoonotic pathogens, including those from the genus Bacillus, Brucella, Coxiella, and others, in bushmeat. Together, this investigation provides a better understanding of the microbiome associated with this major food source in samples collected from the Western Serengeti in Tanzania and highlights a need for future investigations on the potential health risks associated with the harvesting, trade, and consumption of bushmeat in Sub-Saharan Africa.


Asunto(s)
Animales Salvajes/microbiología , Carne/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Ecosistema , Humanos , Carne/provisión & distribución , Microbiota , ARN Ribosómico 16S/genética , Tanzanía , Zoonosis/etiología , Zoonosis/microbiología
16.
Ecol Evol ; 9(23): 13495-13505, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31871660

RESUMEN

External perturbations, such as multispecies infections or anthelmintic treatments, can alter host-parasite interactions with consequences on the dynamics of infection. While the overall profile of infection might appear fundamentally conserved at the host population level, perturbations can disproportionately affect components of parasite demography or host responses, and ultimately impact parasite fitness and long-term persistence.We took an immuno-epidemiological approach to this reasoning and examined a rabbit-helminth system where animals were trickle-dosed with either one or two helminth species, treated halfway through the experiment with an anthelmintic and reinfected one month later following the same initial regime. Parasite traits (body length and fecundity) and host immune responses (cytokines, transcription factors, antibodies) were quantified at fixed time points and compared before and after drug treatment, and between single and dual infections.Findings indicated a resistant host phenotype to Trichostrongylus retortaeformis where abundance, body length, and fecundity were regulated by a protective immune response. In contrast, Graphidium strigosum accumulated in the host and, while it stimulated a clear immune reaction, many genes were downregulated both following reinfection and in dual infection, suggestive of a low host resistance.External perturbations affected parasite fecundity, including body length and number of eggs in utero, more significantly than abundance; however, there was no consistency in the parasite-immune relationships.Disentangling the processes affecting parasite life history, and how they relate to host responses, can provide a better understanding of how external disturbances impact disease severity and transmission, and how parasites strategies adjust to secure persistence at the host and the population level.

17.
BMC Bioinformatics ; 20(1): 374, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31269897

RESUMEN

BACKGROUND: One of the major challenges facing investigators in the microbiome field is turning large numbers of reads generated by next-generation sequencing (NGS) platforms into biological knowledge. Effective analytical workflows that guarantee reproducibility, repeatability, and result provenance are essential requirements of modern microbiome research. For nearly a decade, several state-of-the-art bioinformatics tools have been developed for understanding microbial communities living in a given sample. However, most of these tools are built with many functions that require an in-depth understanding of their implementation and the choice of additional tools for visualizing the final output. Furthermore, microbiome analysis can be time-consuming and may even require more advanced programming skills which some investigators may be lacking. RESULTS: We have developed a wrapper named iMAP (Integrated Microbiome Analysis Pipeline) to provide the microbiome research community with a user-friendly and portable tool that integrates bioinformatics analysis and data visualization. The iMAP tool wraps functionalities for metadata profiling, quality control of reads, sequence processing and classification, and diversity analysis of operational taxonomic units. This pipeline is also capable of generating web-based progress reports for enhancing an approach referred to as review-as-you-go (RAYG). For the most part, the profiling of microbial community is done using functionalities implemented in Mothur or QIIME2 platform. Also, it uses different R packages for graphics and R-markdown for generating progress reports. We have used a case study to demonstrate the application of the iMAP pipeline. CONCLUSIONS: The iMAP pipeline integrates several functionalities for better identification of microbial communities present in a given sample. The pipeline performs in-depth quality control that guarantees high-quality results and accurate conclusions. The vibrant visuals produced by the pipeline facilitate a better understanding of the complex and multidimensional microbiome data. The integrated RAYG approach enables the generation of web-based reports, which provides the investigators with the intermediate output that can be reviewed progressively. The intensively analyzed case study set a model for microbiome data analysis.


Asunto(s)
Microbiota , Programas Informáticos , Bacterias/clasificación , Bacterias/genética , Secuencia de Bases , Biología Computacional/métodos , Filogenia , ARN Ribosómico 16S/química , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética
18.
Front Microbiol ; 10: 1432, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281305

RESUMEN

Newcastle disease virus (NDV) causes substantial economic losses to smallholder farmers in low- and middle-income countries with high levels of morbidity and mortality in poultry flocks. Previous investigations have suggested differing levels of susceptibility to NDV between specific inbred lines and amongst breeds of chickens, however, the mechanisms contributing to this remain poorly understood. Studies have shown that some of these differences in levels of susceptibility to NDV infection may be accounted for by variability in the innate immune response amongst various breeds of poultry to NDV infection. Recent studies, in inbred Fayoumi and Leghorn lines, uncovered conserved, breed-dependent, and subline-dependent responses. To better understand the role of innate immune genes in engendering a protective immune response, we assessed the transcriptional responses to NDV of three highly outbred Tanzanian local chicken ecotypes, the Kuchi, the Morogoro Medium, and the Ching'wekwe. Hierarchical clustering and principal coordinate analysis of the gene expression profiles of 21-day old chick embryos infected with NDV clustered in an ecotype-dependent manner and was consistent with the relative viral loads for each of the three ecotypes. The Kuchi and Morogoro Medium exhibit significantly higher viral loads than the Ching'wekwe. The results show that the outbred ecotypes with increased levels of expression of CCL4, NOS2, and SOCS1 also had higher viral loads. The higher expression of SOCS1 is inconsistent with the expression in inbred lines. These differences may uncover new mechanisms or pathways in these populations that may have otherwise been overlooked when examining the response in highly inbred lines. Taken together, our findings provide insights on the specific conserved and differentially expressed innate immune-related genes involved the response of highly outbred chicken lines to NDV. This also suggests that several of the specific innate immunity related genes identified in the current investigation may serve as markers for the selection of chickens with reduced susceptibility to NDV.

19.
PLoS Comput Biol ; 14(6): e1006167, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29889827

RESUMEN

Understanding the mechanisms that generate complex host-parasite interactions, and how they contribute to variation between and within hosts, is important for predicting risk of infection and transmission, and for developing more effective interventions based on parasite properties. We used the T. retortaeformis (TR)-rabbit system and developed a state-space mathematical framework to capture the variation in intensity of infection and egg shedding in hosts infected weekly, then treated with an anthelminthic and subsequently re-challenged following the same infection regime. Experimental infections indicate that parasite intensity accumulates more slowly in the post-anthelminthic phase but reaches similar maximum numbers. By contrast, parasite EPG (eggs per gram of feces) shed from rabbits in the post-treatment phase is lower and less variable through time. Inference based on EPG alone suggests a decline in parasite intensity over time. Using a state-space model and incorporating all sources of cross-sectional and longitudinal data, we show that while parasite intensity remains relatively constant in both experimental phases, shedding of eggs into the environment is increasingly limited through changes in parasite growth. We suggest that host immunity directly modulates both the accumulation and the growth of the parasite, and indirectly affects transmission by limiting parasite length and thus fecundity. This study provides a better understanding of how within-host trophic interactions influence different components of a helminth population. It also suggests that heterogeneity in parasite traits should be addressed more carefully when examining and managing helminth infections in the absence of some critical data on parasite dynamics.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Trichostrongylus/parasitología , Animales , Antihelmínticos , Evolución Biológica , Helmintos/parasitología , Modelos Biológicos , Modelos Teóricos , Parásitos , Conejos
20.
Infect Dis Poverty ; 6(1): 126, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28866983

RESUMEN

BACKGROUND: Changes of land cover modify the characteristics of habitat, host-vector interaction and consequently infection rates of disease causing agents. In this paper, we report variations in tsetse distribution patterns, abundance and infection rates in relation to habitat types and age in the Maasai Steppe of northern Tanzania. In Africa, Tsetse-transmitted trypanosomiasis negatively impacted human life where about 40 million people are at risk of contracting the disease with dramatic socio-economical consequences, for instance, loss of livestock, animal productivity, and manpower. METHODS: We trapped tsetse flies in dry and wet seasons between October 2014 and May 2015 in selected habitats across four villages: Emboreet, Loiborsireet, Kimotorok and Oltukai adjacent to protected areas. Data collected include number and species of tsetse flies caught in baited traps, PCR identification of trypanosome species and extraction of monitored Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectrometer (MODIS). RESULTS: Our findings demonstrate the variation of tsetse fly species abundance and infection rates among habitats in surveyed villages in relation to NDVI and host abundance. Results have shown higher tsetse fly abundance in Acacia-swampy ecotone and riverine habitats for Emboreet and other villages, respectively. Tsetse abundance was inconsistent among habitats in different villages. Emboreet was highly infested with Glossina swynnertoni (68%) in ecotone and swampy habitats followed by G. morsitans (28%) and G. pallidipes (4%) in riverine habitat. In the remaining villages, the dominant tsetse fly species by 95% was G. pallidipes in all habitats. Trypanosoma vivax was the most prevalent species in all infected flies (95%) with few observations of co-infections (with T. congolense or T. brucei). CONCLUSIONS: The findings of this study provide a framework to mapping hotspots of tsetse infestation and trypanosomiasis infection and enhance the communities to plan for effective control of trypanosomiasis.


Asunto(s)
Distribución Animal , Trypanosoma/aislamiento & purificación , Moscas Tse-Tse/fisiología , Moscas Tse-Tse/parasitología , Animales , Ecosistema , Femenino , Masculino , Dinámica Poblacional , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...