Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583153

RESUMEN

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Asunto(s)
Diferenciación Celular , Ventrículos Laterales , Factor Inhibidor de Leucemia , Organoides , Células Madre Pluripotentes , Humanos , Organoides/metabolismo , Organoides/citología , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/farmacología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Factor de Transcripción STAT3/metabolismo , Neuroglía/metabolismo , Neuroglía/citología , Transducción de Señal
2.
Nat Rev Neurol ; 19(10): 583-598, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37644213

RESUMEN

Cholesterol is an important metabolite and membrane component and is enriched in the brain owing to its role in neuronal maturation and function. In the adult brain, cholesterol is produced locally, predominantly by astrocytes. When cholesterol has been used, recycled and catabolized, the derivatives are excreted across the blood-brain barrier. Abnormalities in any of these steps can lead to neurological dysfunction. Here, we examine how precise interactions between cholesterol production and its use and catabolism in neurons ensures cholesterol homeostasis to support brain function. As an example of a neurological disease associated with cholesterol dyshomeostasis, we summarize evidence from animal models of Huntington disease (HD), which demonstrate a marked reduction in cholesterol biosynthesis with clinically relevant consequences for synaptic activity and cognition. In addition, we examine the relationship between cholesterol loss in the brain and cognitive decline in ageing. We then present emerging therapeutic strategies to restore cholesterol homeostasis, focusing on evidence from HD mouse models.


Asunto(s)
Colesterol , Enfermedad de Huntington , Animales , Ratones , Colesterol/metabolismo , Encéfalo , Neuronas/fisiología , Enfermedad de Huntington/terapia , Enfermedad de Huntington/metabolismo , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad
3.
Stem Cell Res Ther ; 14(1): 189, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507794

RESUMEN

BACKGROUND: Huntington's disease (HD) is a motor and cognitive neurodegenerative disorder due to prominent loss of striatal medium spiny neurons (MSNs). Cell replacement using human embryonic stem cells (hESCs) derivatives may offer new therapeutic opportunities to replace degenerated neurons and repair damaged circuits. METHODS: With the aim to develop effective cell replacement for HD, we assessed the long-term therapeutic value of hESC-derived striatal progenitors by grafting the cells into the striatum of a preclinical model of HD [i.e., adult immunodeficient rats in which the striatum was lesioned by monolateral injection of quinolinic acid (QA)]. We examined the survival, maturation, self-organization and integration of the graft as well as its impact on lesion-dependent motor alterations up to 6 months post-graft. Moreover, we tested whether exposing a cohort of QA-lesioned animals to environmental enrichment (EE) could improve graft integration and function. RESULTS: Human striatal progenitors survived up to 6 months after transplantation and showed morphological and neurochemical features typical of human MSNs. Donor-derived interneurons were also detected. Grafts wired in both local and long-range striatal circuits, formed domains suggestive of distinct ganglionic eminence territories and displayed emerging striosome features. Moreover, over time grafts improved complex motor performances affected by QA. EE selectively increased cell differentiation into MSN phenotype and promoted host-to-graft connectivity. However, when combined to the graft, the EE paradigm used in this study was insufficient to produce an additive effect on task execution. CONCLUSIONS: The data support the long-term therapeutic potential of ESC-derived human striatal progenitor grafts for the replacement of degenerated striatal neurons in HD and suggest that EE can effectively accelerate the maturation and promote the integration of human striatal cells.


Asunto(s)
Trasplante de Tejido Encefálico , Células Madre Embrionarias Humanas , Enfermedad de Huntington , Ratas , Animales , Humanos , Enfermedad de Huntington/terapia , Cuerpo Estriado/fisiología , Neuronas , Modelos Animales de Enfermedad
4.
Elife ; 122023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37272619

RESUMEN

WDR62 is a spindle pole-associated scaffold protein with pleiotropic functions. Recessive mutations in WDR62 cause structural brain abnormalities and account for the second most common cause of autosomal recessive primary microcephaly (MCPH), indicating WDR62 as a critical hub for human brain development. Here, we investigated WDR62 function in corticogenesis through the analysis of a C-terminal truncating mutation (D955AfsX112). Using induced Pluripotent Stem Cells (iPSCs) obtained from a patient and his unaffected parent, as well as isogenic corrected lines, we generated 2D and 3D models of human neurodevelopment, including neuroepithelial stem cells, cerebro-cortical progenitors, terminally differentiated neurons, and cerebral organoids. We report that WDR62 localizes to the Golgi apparatus during interphase in cultured cells and human fetal brain tissue, and translocates to the mitotic spindle poles in a microtubule-dependent manner. Moreover, we demonstrate that WDR62 dysfunction impairs mitotic progression and results in alterations of the neurogenic trajectories of iPSC neuroderivatives. In summary, impairment of WDR62 localization and function results in severe neurodevelopmental abnormalities, thus delineating new mechanisms in the etiology of MCPH.


Asunto(s)
Proteínas de Ciclo Celular , Aparato de Golgi , Microcefalia , Proteínas del Tejido Nervioso , Polos del Huso , Humanos , Microcefalia/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Ciclo Celular/metabolismo , Masculino , Células Madre Pluripotentes Inducidas , Mitosis , Niño , Adolescente
5.
Pharmacol Res ; 194: 106823, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37336430

RESUMEN

Evidence that Huntington's disease (HD) is characterized by impaired cholesterol biosynthesis in the brain has led to strategies to increase its level in the brain of the rapidly progressing R6/2 mouse model, with a positive therapeutic outcome. Here we tested the long-term efficacy of chronic administration of cholesterol to the brain of the slowly progressing zQ175DN knock-in HD mice in preventing ("early treatment") or reversing ("late treatment") HD symptoms. To do this we used the most advanced formulation of cholesterol loaded brain-permeable nanoparticles (NPs), termed hybrid-g7-NPs-chol, which were injected intraperitoneally. We show that one cycle of treatment with hybrid-g7-NPs-chol, administered in the presymptomatic ("early treatment") or symptomatic ("late treatment") stages is sufficient to normalize cognitive defects up to 5 months, as well as to improve other behavioral and neuropathological parameters. A multiple cycle treatment combining both early and late treatments ("2 cycle treatment") lasting 6 months generates therapeutic effects for more than 11 months, without severe adverse reactions. Sustained cholesterol delivery to the brain of zQ175DN mice also reduces mutant Huntingtin aggregates in both the striatum and cortex and completely normalizes synaptic communication in the striatal medium spiny neurons compared to saline-treated HD mice. Furthermore, through a meta-analysis of published and current data, we demonstrated the power of hybrid-g7-NPs-chol and other strategies able to increase brain cholesterol biosynthesis, to reverse cognitive decline and counteract the formation of mutant Huntingtin aggregates. These results demonstrate that cholesterol delivery via brain-permeable NPs is a therapeutic option to sustainably reverse HD-related behavioral decline and neuropathological signs over time, highlighting the therapeutic potential of cholesterol-based strategies in HD patients. DATA AVAILABILITY: This study does not include data deposited in public repositories. Data are available on request to the corresponding authors.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/patología , Encéfalo/patología , Colesterol , Cuerpo Estriado/patología , Cognición , Modelos Animales de Enfermedad , Ratones Transgénicos
6.
J Neurol ; 270(7): 3543-3552, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37024733

RESUMEN

STUDY OBJECTIVES: To describe a case series of patients with prominent sleep disturbances and their polysomnography findings in six patients with dipeptidyl-peptidase-like protein-6 (DPPX) autoimmunity syndrome. METHODS: Of 13 patients with DPPX autoimmunity evaluated at Mayo Clinic, 6 were seen by Sleep Medicine with polysomnography and were assessed with blood and cerebrospinal fluid, neuroimaging, neuropsychological testing, and evaluation tailored to clinical presentation. RESULTS: Median age of our six DPPX autoimmunity patients was 57 (range 27-70) years, with one woman. All patients had prominent gastrointestinal disturbances, most with prominent and early weight loss, and a spectrum of neuropsychiatric disturbances including cognitive impairment, myoclonus, exaggerated startle, and dysautonomia. Sleep disturbances included insomnia and obstructive sleep apnea in six patients, periodic leg movements of sleep in four, and REM sleep behavior disorder in two. Polysomnography demonstrated REM sleep-atonia loss in four patients, and ambiguous sleep with status dissociatus (mixed features of wakefulness, non-rapid eye movement [NREM], and REM sleep) appeared in one patient. Five of six patients showed neurological improvement with immunotherapy, including three with at least partial improvement in sleep disturbances. CONCLUSION: Our patients with DPPX autoimmunity syndrome had prominent sleep disturbances including sleep-disordered breathing, REM sleep behavior disorder, and abnormal NREM sleep architecture with highly variable clinical presentations. DPPX autoimmunity should be considered in cases with a triad of sleep disturbance, neurological features of hyperexcitability, and systemic symptoms of gastrointestinal disturbance and weight loss. Future prospective studies of DPPX autoimmunity syndrome including detailed sleep evaluation and follow-up are necessary.


Asunto(s)
Trastorno de la Conducta del Sueño REM , Trastornos del Sueño-Vigilia , Femenino , Humanos , Adulto , Persona de Mediana Edad , Anciano , Trastorno de la Conducta del Sueño REM/diagnóstico , Estudios Prospectivos , Trastornos del Sueño-Vigilia/etiología , Trastornos del Sueño-Vigilia/diagnóstico , Sueño , Autoanticuerpos , Pérdida de Peso
7.
bioRxiv ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824730

RESUMEN

Mammalian outer radial glia (oRG) emerge as cortical progenitor cells that directly support the development of an enlarged outer subventricular zone (oSVZ) and, in turn, the expansion of the neocortex. The in vitro generation of oRG is essential to model and investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 pathway using LIF, which is not produced in guided cortical organoids, we developed a cerebral organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The structured oSVZ is composed of progenitor cells expressing specific oRG markers such as GFAP, LIFR, HOPX , which closely matches human oRG in vivo . In this microenvironment, cortical neurons showed faster maturation with enhanced metabolic and functional activity. Incorporation of hPSC-derived brain vascular LIF- producing pericytes in cerebral organoids mimicked the effects of LIF treatment. These data indicate that the cellular complexity of the cortical microenvironment, including cell-types of the brain vasculature, favors the appearance of oRG and provides a platform to routinely study oRG in hPSC-derived brain organoids.

8.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361956

RESUMEN

In vitro models of corticogenesis from pluripotent stem cells (PSCs) have greatly improved our understanding of human brain development and disease. Among these, 3D cortical organoid systems are able to recapitulate some aspects of in vivo cytoarchitecture of the developing cortex. Here, we tested three cortical organoid protocols for brain regional identity, cell type specificity and neuronal maturation. Overall, all protocols gave rise to organoids that displayed a time-dependent expression of neuronal maturation genes such as those involved in the establishment of synapses and neuronal function. Comparatively, guided differentiation methods without WNT activation generated the highest degree of cortical regional identity, whereas default conditions produced the broadest range of cell types such as neurons, astrocytes and hematopoietic-lineage-derived microglia cells. These results suggest that cortical organoid models produce diverse outcomes of brain regional identity and cell type specificity and emphasize the importance of selecting the correct model for the right application.


Asunto(s)
Organoides , Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Neuronas/metabolismo , Encéfalo
9.
Nat Commun ; 13(1): 5688, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202854

RESUMEN

Human telencephalon is an evolutionarily advanced brain structure associated with many uniquely human behaviors and disorders. However, cell lineages and molecular pathways implicated in human telencephalic development remain largely unknown. We produce human telencephalic organoids from stem cell-derived single neural rosettes and investigate telencephalic development under normal and pathological conditions. We show that single neural rosette-derived organoids contain pallial and subpallial neural progenitors, excitatory and inhibitory neurons, as well as macroglial and periendothelial cells, and exhibit predictable organization and cytoarchitecture. We comprehensively characterize the properties of neurons in SNR-derived organoids and identify transcriptional programs associated with the specification of excitatory and inhibitory neural lineages from a common pool of NPs early in telencephalic development. We also demonstrate that neurons in organoids with a hemizygous deletion of an autism- and intellectual disability-associated gene SHANK3 exhibit intrinsic and excitatory synaptic deficits and impaired expression of several clustered protocadherins. Collectively, this study validates SNR-derived organoids as a reliable model for studying human telencephalic cortico-striatal development and identifies intrinsic, synaptic, and clustered protocadherin expression deficits in human telencephalic tissue with SHANK3 hemizygosity.


Asunto(s)
Trastorno Autístico , Trastorno Autístico/genética , Humanos , Proteínas del Tejido Nervioso/metabolismo , Organoides/metabolismo , Protocadherinas , Telencéfalo
10.
Stem Cell Reports ; 17(6): 1245-1247, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705013

RESUMEN

The ISSCR has developed the Informed Consent Standards for Human Fetal Tissue Donation and Research to promote uniformity and transparency in tissue donation and collection. This standard is designed to assist those working with and overseeing the regulation of such tissue and reassure the wider community and public.


Asunto(s)
Consentimiento Informado , Obtención de Tejidos y Órganos , Feto , Humanos
11.
Cells ; 11(7)2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35406680

RESUMEN

Clinical evidence suggests an improvement or stabilization of lung function in a fraction of patients with bronchiolitis obliterans syndrome (BOS) treated by extracorporeal photopheresis (ECP); however, few studies have explored the epigenetic and molecular regulation of this therapy. The aim of present study was to evaluate whether a specific set of miRNAs were significantly regulated by ECP. Total RNA was isolated from serum of patients with established BOS grade 1-2 prior to the start and after 6 months of ECP treatment. We observed a significant downregulation of circulating hsa-miR-155-5p, hsa-miR-146a-5p and hsa-miR-31-5p in BOS patients at the start of ECP when compared to healthy subjects. In responders, increased miR-155-5p and decreased miR-23b-3p expression levels at 6 months were found. SMAD4 mRNA was found to be a common target of these two miRNAs in prediction pathways analysis, and a significant downregulation was found at 6 months in PBMCs of a subgroup of ECP-treated patients. According to previous evidence, the upregulation of miR-155 might be correlated with a pro-tolerogenic modulation of the immune system. Our analysis also suggests that SMAD4 might be a possible target for miR-155-5p. Further longitudinal studies are needed to address the possible role of miR-155 and its downstream targets.


Asunto(s)
Bronquiolitis Obliterante , MicroARN Circulante , Trasplante de Pulmón , MicroARNs , Fotoféresis , Bronquiolitis Obliterante/genética , Bronquiolitis Obliterante/terapia , MicroARN Circulante/genética , Humanos , MicroARNs/genética , Síndrome
12.
ERJ Open Res ; 8(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35265706

RESUMEN

Background: Nutritional status impacts quality of life and prognosis of patients with respiratory diseases, including idiopathic pulmonary fibrosis (IPF). However, there is a lack of studies performing an extensive nutritional assessment of IPF patients. This study aimed to investigate the nutritional status and to identify nutritional phenotypes in a cohort of IPF patients at diagnosis. Methods: Patients underwent a thorough pulmonary and nutritional evaluation including questionnaires on nutritional status, and physical activity, anthropometry, body impedance, dynamometry, 4-m gait speed and blood tests. Results: 90 IPF patients (78.9% males, mean age 72.7 years) were enrolled. The majority of patients were classified as Gender-Age-Physiology Index stage 2 (47, 52.2%) with an inactive lifestyle according to International Physical Activity Questionnaire score (39, 43.3%), and had mean forced vital capacity and diffusing capacity for carbon monoxide 86.5% and 54.2%, respectively. In regards to nutritional phenotypes, the majority of patients were normally nourished (67.8%, 95% CI 58.6-77.7%), followed by non-sarcopenic obese (25.3%, 95% CI 16.1-35.2%), sarcopenic (4.6%, 95% CI 0.0-14.5%) and sarcopenic obese (2.3%, 95% CI 0.0-12.2%). Among the normally nourished, 49.2% showed early signs of nutritional and physical performance alterations, including body mass index ≥30 kg·m-2 in 4.3%, history of weight loss ≥5% in 11.9%, and reduction of gait speed and hand grip strength in 11.9% and 35.6%, respectively. Low vitamin D values were observed in 56.3% of cases. Conclusions: IPF patients at diagnosis are mainly normally nourished and obese, but early signs of nutritional and physical performance impairment can already be identified at this stage.

13.
Cell Death Differ ; 29(2): 293-305, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34974533

RESUMEN

Huntington's disease is caused by a pathologically long (>35) CAG repeat located in the first exon of the Huntingtin gene (HTT). While pathologically expanded CAG repeats are the focus of extensive investigations, non-pathogenic CAG tracts in protein-coding genes are less well characterized. Here, we investigated the function and evolution of the physiological CAG tract in the HTT gene. We show that the poly-glutamine (polyQ) tract encoded by CAGs in the huntingtin protein (HTT) is under purifying selection and subjected to stronger selective pressures than CAG-encoded polyQ tracts in other proteins. For natural selection to operate, the polyQ must perform a function. By combining genome-edited mouse embryonic stem cells and cell assays, we show that small variations in HTT polyQ lengths significantly correlate with cells' neurogenic potential and with changes in the gene transcription network governing neuronal function. We conclude that during evolution natural selection promotes the conservation and purity of the CAG-encoded polyQ tract and that small increases in its physiological length influence neural functions of HTT. We propose that these changes in HTT polyQ length contribute to evolutionary fitness including potentially to the development of a more complex nervous system.


Asunto(s)
Enfermedad de Huntington , Péptidos , Animales , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Ratones , Neuronas/metabolismo , Péptidos/genética , Péptidos/metabolismo
14.
Cell Rep Methods ; 2(12): 100367, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36590694

RESUMEN

Stem cell engineering of striatal medium spiny neurons (MSNs) is a promising strategy to understand diseases affecting the striatum and for cell-replacement therapies in different neurological diseases. Protocols to generate cells from human pluripotent stem cells (PSCs) are scarce and how well they recapitulate the endogenous fetal cells remains poorly understood. We have developed a protocol that modulates cell seeding density and exposure to specific morphogens that generates authentic and functional D1- and D2-MSNs with a high degree of reproducibility in 25 days of differentiation. Single-cell RNA sequencing (scRNA-seq) shows that our cells can mimic the cell-fate acquisition steps observed in vivo in terms of cell type composition, gene expression, and signaling pathways. Finally, by modulating the midkine pathway we show that we can increase the yield of MSNs. We expect that this protocol will help decode pathogenesis factors in striatal diseases and eventually facilitate cell-replacement therapies for Huntington's disease (HD).


Asunto(s)
Neuronas Espinosas Medianas , Células Madre Pluripotentes , Humanos , Reproducibilidad de los Resultados , Neurogénesis , Cuerpo Estriado , Células Madre Pluripotentes/metabolismo
15.
Blood Adv ; 5(14): 2817-2828, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34269799

RESUMEN

Chronic lymphocytic leukemia (CLL) is caused by the progressive accumulation of mature CD5+ B cells in secondary lymphoid organs. In vitro data suggest that CD4+ T lymphocytes also sustain survival and proliferation of CLL clones through CD40L/CD40 interactions. In vivo data in animal models are conflicting. To clarify this clinically relevant biological issue, we generated genetically modified Eµ-TCL1 mice lacking CD4+ T cells (TCL1+/+AB0), CD40 (TCL1+/+CD40-/-), or CD8+ T cells (TCL1+/+TAP-/-), and we monitored the appearance and progression of a disease that mimics aggressive human CLL by flow cytometry and immunohistochemical analyses. Findings were confirmed by adoptive transfer of leukemic cells into mice lacking CD4+ T cells or CD40L or mice treated with antibodies depleting CD4 T cells or blocking CD40L/CD40 interactions. CLL clones did not proliferate in mice lacking or depleted of CD4+ T cells, thus confirming that CD4+ T cells are essential for CLL development. By contrast, CD8+ T cells exerted an antitumor activity, as indicated by the accelerated disease progression in TCL1+/+TAP-/- mice. Antigen specificity of CD4+ T cells was marginal for CLL development, because CLL clones efficiently proliferated in transgenic mice whose CD4 T cells had a T-cell receptor with CLL-unrelated specificities. Leukemic clones also proliferated when transferred into wild-type mice treated with monoclonal antibodies blocking CD40 or into CD40L-/- mice, and TCL1+/+CD40-/- mice developed frank CLL. Our data demonstrate that CD8+ T cells restrain CLL progression, whereas CD4+ T cells support the growth of leukemic clones in TCL1 mice through CD40-independent and apparently noncognate mechanisms.


Asunto(s)
Dromaiidae , Leucemia Linfocítica Crónica de Células B , Animales , Linfocitos T CD4-Positivos , Ligando de CD40/genética , Leucemia Linfocítica Crónica de Células B/genética , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas
16.
Science ; 372(6542)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33958447

RESUMEN

Deciphering how the human striatum develops is necessary for understanding the diseases that affect this region. To decode the transcriptional modules that regulate this structure during development, we compiled a catalog of 1116 long intergenic noncoding RNAs (lincRNAs) identified de novo and then profiled 96,789 single cells from the early human fetal striatum. We found that D1 and D2 medium spiny neurons (D1- and D2-MSNs) arise from a common progenitor and that lineage commitment is established during the postmitotic transition, across a pre-MSN phase that exhibits a continuous spectrum of fate determinants. We then uncovered cell type-specific gene regulatory networks that we validated through in silico perturbation. Finally, we identified human-specific lincRNAs that contribute to the phylogenetic divergence of this structure in humans. This work delineates the cellular hierarchies governing MSN lineage commitment.


Asunto(s)
Atlas como Asunto , Cuerpo Estriado/citología , Cuerpo Estriado/embriología , Neurogénesis/genética , ARN Largo no Codificante/genética , Análisis de la Célula Individual , Factores de Transcripción/genética , Feto , Neuronas GABAérgicas/metabolismo , Humanos , RNA-Seq , Transcripción Genética
17.
Brain ; 144(10): 3175-3190, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33974044

RESUMEN

Brain cholesterol is produced mainly by astrocytes and is important for neuronal function. Its biosynthesis is severely reduced in mouse models of Huntington's disease. One possible mechanism is a diminished nuclear translocation of the transcription factor sterol regulatory element-binding protein 2 (SREBP2) and, consequently, reduced activation of SREBP2-controlled genes in the cholesterol biosynthesis pathway. Here we evaluated the efficacy of a gene therapy based on the unilateral intra-striatal injection of a recombinant adeno-associated virus 2/5 (AAV2/5) targeting astrocytes specifically and carrying the transcriptionally active N-terminal fragment of human SREBP2 (hSREBP2). Robust hSREBP2 expression in striatal glial cells in R6/2 Huntington's disease mice activated the transcription of cholesterol biosynthesis pathway genes, restored synaptic transmission, reversed dopamine receptor D2 (Drd2) transcript levels decline, cleared mutant huntingtin aggregates and attenuated behavioural deficits. We conclude that glial SREBP2 participates in Huntington's disease brain pathogenesis in vivo and that AAV-based delivery of SREBP2 to astrocytes counteracts key features of the disease.


Asunto(s)
Astrocitos/metabolismo , Cuerpo Estriado/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Enfermedad de Huntington/terapia , Proteína 2 de Unión a Elementos Reguladores de Esteroles/administración & dosificación , Animales , Astrocitos/patología , Cuerpo Estriado/patología , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Transgénicos , Fenotipo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/biosíntesis , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
18.
Nat Rev Neurol ; 17(6): 381-392, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33658662

RESUMEN

Human induced pluripotent stem cells (hiPSCs) were first generated in 2007, but the full translational potential of this valuable tool has yet to be realized. The potential applications of hiPSCs are especially relevant to neurology, as brain cells from patients are rarely available for research. hiPSCs from individuals with neuropsychiatric or neurodegenerative diseases have facilitated biological and multi-omics studies as well as large-scale screening of chemical libraries. However, researchers are struggling to improve the scalability, reproducibility and quality of this descriptive disease modelling. Addressing these limitations will be the first step towards a new era in hiPSC research - that of predictive disease modelling - involving the correlation and integration of in vitro experimental data with longitudinal clinical data. This approach is a key element of the emerging precision medicine paradigm, in which hiPSCs could become a powerful diagnostic and prognostic tool. Here, we consider the steps necessary to achieve predictive modelling of neurodegenerative disease with hiPSCs, using Huntington disease as an example.


Asunto(s)
Epigénesis Genética/genética , Pruebas Genéticas/tendencias , Células Madre Pluripotentes Inducidas/fisiología , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/genética , Ensayos Clínicos como Asunto/métodos , Pruebas Genéticas/métodos , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Enfermedades Neurodegenerativas/terapia , Valor Predictivo de las Pruebas
19.
Hum Mol Genet ; 30(13): 1175-1187, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33601422

RESUMEN

Synaptic dysfunction and cognitive decline in Huntington's disease (HD) involve hyperactive A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10). To identify the molecular mechanisms through which ADAM10 is associated with synaptic dysfunction in HD, we performed an immunoaffinity purification-mass spectrometry (IP-MS) study of endogenous ADAM10 in the brains of wild-type and HD mice. We found that proteins implicated in synapse organization, synaptic plasticity, and vesicle and organelles trafficking interact with ADAM10, suggesting that it may act as hub protein at the excitatory synapse. Importantly, the ADAM10 interactome is enriched in presynaptic proteins and ADAM10 co-immunoprecipitates with piccolo (PCLO), a key player in the recycling and maintenance of synaptic vesicles. In contrast, reduced ADAM10/PCLO immunoprecipitation occurs in the HD brain, with decreased density of synaptic vesicles in the reserve and docked pools at the HD presynaptic terminal. Conditional heterozygous deletion of ADAM10 in the forebrain of HD mice reduces active ADAM10 to wild-type level and normalizes ADAM10/PCLO complex formation and synaptic vesicle density and distribution. The results indicate that presynaptic ADAM10 and PCLO are a relevant component of HD pathogenesis.


Asunto(s)
Proteína ADAM10/metabolismo , Proteínas del Citoesqueleto/metabolismo , Enfermedad de Huntington/metabolismo , Neuropéptidos/metabolismo , Vesículas Sinápticas/metabolismo , Proteína ADAM10/genética , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Humanos , Enfermedad de Huntington/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Terminales Presinápticos/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas/genética , Proteómica/métodos , Vesículas Sinápticas/ultraestructura , Sinaptosomas/metabolismo , Espectrometría de Masas en Tándem/métodos
20.
J Control Release ; 330: 587-598, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33412229

RESUMEN

Supplementing brain cholesterol is emerging as a potential treatment for Huntington's disease (HD), a genetic neurodegenerative disorder characterized, among other abnormalities, by inefficient brain cholesterol biosynthesis. However, delivering cholesterol to the brain is challenging due to the blood-brain barrier (BBB), which prevents it from reaching the striatum, especially, with therapeutically relevant doses. Here we describe the distribution, kinetics, release, and safety of novel hybrid polymeric nanoparticles made of PLGA and cholesterol which were modified with an heptapeptide (g7) for BBB transit (hybrid-g7-NPs-chol). We show that these NPs rapidly reach the brain and target neural cells. Moreover, deuterium-labeled cholesterol from hybrid-g7-NPs-chol is released in a controlled manner within the brain and accumulates over time, while being rapidly removed from peripheral tissues and plasma. We confirm that systemic and repeated injections of the new hybrid-g7-NPs-chol enhanced endogenous cholesterol biosynthesis, prevented cognitive decline, and ameliorated motor defects in HD animals, without any inflammatory reaction. In summary, this study provides insights about the benefits and safety of cholesterol delivery through advanced brain-permeable nanoparticles for HD treatment.


Asunto(s)
Enfermedad de Huntington , Nanopartículas , Animales , Encéfalo , Colesterol , Enfermedad de Huntington/tratamiento farmacológico , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...