Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 23(2): 231-239, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27956748

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder often accompanied by intellectual disability, language impairment and medical co-morbidities. The heritability of autism is high and multiple genes have been implicated as causal. However, most of these genes have been identified in de novo cases. To further the understanding of familial autism, we performed whole-exome sequencing on five families in which second- and third-degree relatives were affected. By focusing on novel and protein-altering variants, we identified a small set of candidate genes. Among these, a novel private missense C1143F variant in the second intracellular loop of the voltage-gated sodium channel NaV1.7, encoded by the SCN9A gene, was identified in one family. Through electrophysiological analysis, we show that NaV1.7C1143F exhibits partial loss-of-function effects, resulting in slower recovery from inactivation and decreased excitability in cultured cortical neurons. Furthermore, for the same intracellular loop of NaV1.7, we found an excess of rare variants in a case-control variant-burden study. Functional analysis of one of these variants, M932L/V991L, also demonstrated reduced firing in cortical neurons. However, although this variant is rare in Caucasians, it is frequent in Latino population, suggesting that genetic background can alter its effects on phenotype. Although the involvement of the SCN1A and SCN2A genes encoding NaV1.1 and NaV1.2 channels in de novo ASD has previously been demonstrated, our study indicates the involvement of inherited SCN9A variants and partial loss-of-function of NaV1.7 channels in the etiology of rare familial ASD.


Asunto(s)
Trastorno Autístico/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Trastorno del Espectro Autista/genética , Estudios de Casos y Controles , Familia , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Mutación , Mutación Missense/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuronas/fisiología , Fenotipo , Canales de Sodio/genética , Secuenciación del Exoma
2.
Br J Pharmacol ; 170(8): 1449-58, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24528237

RESUMEN

The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.


Asunto(s)
Bases de Datos Farmacéuticas , Terapia Molecular Dirigida , Farmacología , Humanos , Ligandos , Preparaciones Farmacéuticas/química
3.
Biochem Soc Trans ; 34(Pt 6): 1299-302, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17073806

RESUMEN

Currents through voltage-gated sodium channels drive action potential depolarization in neurons and other excitable cells. Smaller currents through these channels are key components of currents that control neuronal firing and signal integration. Changes in sodium current have profound effects on neuronal firing. Sodium channels are controlled by neuromodulators acting through phosphorylation of the channel by serine/threonine and tyrosine protein kinases. That phosphorylation requires specific molecular interaction of kinases and phosphatases with the channel molecule to form localized signalling complexes. Such localization is required for effective neurotransmitter-mediated regulation of sodium channels by protein kinase A. Analogous molecular complexes between sodium channels, kinases and other signalling molecules are expected to be necessary for specific and localized transmitter-mediated modulation of sodium channels by other protein kinases.


Asunto(s)
Neuronas/fisiología , Canales de Sodio/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cinética , Modelos Moleculares , Fosforilación , Fosfotirosina/metabolismo , Conformación Proteica , Proteína Quinasa C/metabolismo , Canales de Sodio/química
4.
Am J Physiol Heart Circ Physiol ; 291(6): H2669-79, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16751287

RESUMEN

Overexpression of calcineurin in transgenic mouse heart results in massive cardiac hypertrophy followed by sudden death. Sudden deaths are caused by abrupt transitions from sinus rhythm to heart block (asystole) in calcineurin-overexpressing (CN) mice. Preliminary studies showed decreased maximum change in potential over time (dV/dt(max)) of phase 0 of the action potential. Accordingly, the hypothesis was tested that decreased activity of the sodium channel contributes to heart block. Profound decreases in activity of sodium currents (I(Na)) paralleled the changes in action potential characteristics. Progressive age-dependent decreases were observed such that at 42-50 days of life little sodium channel function existed. However, this was not paralleled by decreased protein expression as assessed by immunocytochemistry or by Western blot. Since calcineurin can interact with the ryanodine receptor, we assessed whether chronic in vitro treatment with BAPTA-AM, thapsigargin, and ryanodine could rescue the decrease of I(Na). All of these treatments rescued I(Na) to levels indistinguishable from wild type. The nonspecific PKC inhibitor bisindolylmaleimide I also rescued the decrease of I(Na). To assess whether decreased sodium channel activity contributes to sudden death in vivo, the response to encainide (20 mg/kg) was assessed: 6 of 10 young CN mice died because of asystole, whereas 0 of 10 wild-type mice died (P < 0.01). Moreover, encainide produced exaggerated prolongation of the QRS width in sinus beats before the heart block. Catecholamine tone appears necessary to support life in older CN mice because propranolol (1 mg/kg) triggered asystolic death in five of six CN mice. We conclude that decrease in sodium channel activity is in the common final pathway to asystole in CN mice.


Asunto(s)
Calcineurina/metabolismo , Bloqueo Cardíaco/fisiopatología , Transducción de Señal/fisiología , Canales de Sodio/metabolismo , Potenciales de Acción/fisiología , Animales , Calcineurina/genética , Regulación hacia Abajo , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Regulación de la Expresión Génica , Bloqueo Cardíaco/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Ratones , Ratones Transgénicos , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Canales de Sodio/efectos de los fármacos , Canales de Sodio/genética , Tapsigargina/farmacología , Regulación hacia Arriba
5.
Neuropharmacology ; 44(3): 413-22, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12604088

RESUMEN

Voltage-gated sodium channels are blocked by local anesthetic and anticonvulsant drugs. A receptor site for local anesthetics has been defined in transmembrane segment S6 in domain IV (IVS6) of the alpha subunit, but the anticonvulsant lamotrigine and related compounds have more complex structures than local anesthetics and may interact with additional amino acid residues. Apparent K(D) values for inactivated-state block of rat brain type IIA sodium channels expressed in Xenopus oocytes were 31.9 micro M, 17.3 micro M, 3.7 micro M and 10.3 micro M for lamotrigine and compounds 227c89, 4030w92 and 619c89, respectively. Compound 619c89 was the strongest frequency-dependent blocker, which correlated with higher affinity and a five-fold slower recovery from drug block compared to lamotrigine. Examination of lamotrigine block of mutant sodium channel alpha subunits, in which alanine had been substituted for each individual amino acid in IVS6, identified mutations I1760A, F1764A and Y1771A as causing the largest reductions in affinity (six-, seven- and 12-fold, respectively). The ratios of effects of these three mutations differed for compounds 227c89, 4030w92, and 619c89. The amino acid residues interacting with these pore-blocking drugs define a surface of IVS6 that is exposed to the pore and may rotate during gating.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Estructura Terciaria de Proteína/efectos de los fármacos , Agonistas de los Canales de Sodio , Triazinas/farmacología , Alanina/genética , Animales , Sitios de Unión , Relación Dosis-Respuesta a Droga , Activación del Canal Iónico/efectos de los fármacos , Cinética , Lamotrigina , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Inhibidores de la Captación de Neurotransmisores/farmacología , Oocitos , Técnicas de Placa-Clamp , Piperazinas/farmacología , Estructura Terciaria de Proteína/fisiología , Pirimidinas/farmacología , Proteínas Recombinantes/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/genética , Canales de Sodio/metabolismo , Relación Estructura-Actividad , Factores de Tiempo , Triazinas/química , Xenopus
6.
Proc Natl Acad Sci U S A ; 98(26): 15348-53, 2001 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-11742069

RESUMEN

Inactivation is a fundamental characteristic of Na(+) channels, and small changes cause skeletal muscle paralysis and myotonia, epilepsy, and cardiac arrhythmia. Brain Na(v)1.2a channels have faster inactivation than cardiac Na(v)1.5 channels, but minor differences in inactivation gate structure are not responsible. We constructed chimeras in which the C termini beyond the fourth homologous domains of Na(v)1.2a and Na(v)1.5 were exchanged. Replacing the C-terminal domain (CT) of Na(v)1.2a with that of Na(v)1.5 (Na(v)1.2/1.5CT) slowed inactivation at +40 mV approximately 2-fold, making it similar to Na(v)1.5. Conversely, replacing the CT of Na(v)1.5 with that of Na(v)1.2a (Nav1.5/1.2CT) accelerated inactivation, making it similar to Na(v)1.2a. Activation properties were unaffected. The voltage dependence of steady-state inactivation of Na(v)1.5 is 16 mV more negative than that of Na(v)1.2a. The steady-state inactivation curve of Na(v)1.2a was shifted +12 mV in Na(v)1.2/1.5CT, consistent with destabilization of the inactivated state. Conversely, Na(v)1.5/1.2CT was shifted -14 mV relative to Na(v)1.5, consistent with stabilization of the inactivated state. Although these effects of exchanging C termini were consistent with their effects on inactivation kinetics, they magnified the differences in the voltage dependence of inactivation between brain and cardiac channels rather than transferring them. Thus, other parts of these channels determine the basal difference in steady-state inactivation. Deletion of the distal half of either the Na(v)1.2 or Na(v)1.5 CTs accelerated open-state inactivation and negatively shifted steady-state inactivation. Thus, the C terminus has a strong influence on kinetics and voltage dependence of inactivation in brain Na(v)1.2 and cardiac Na(v)1.5 channels and is primarily responsible for their differing rates of channel inactivation.


Asunto(s)
Encéfalo/metabolismo , Miocardio/metabolismo , Canales de Sodio/fisiología , Línea Celular , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Eliminación de Secuencia , Canales de Sodio/química , Canales de Sodio/genética , Canales de Sodio/metabolismo
8.
J Gen Physiol ; 118(3): 291-302, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11524459

RESUMEN

beta-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3-S4 loop at the extracellular end of the S4 voltage sensor in domain II of the alpha subunit. Here, we probe the role of gating charges in the IIS4 segment in beta-scorpion toxin action by mutagenesis and functional analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the presumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances beta-scorpion toxin action, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the beta-scorpion toxin Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a depolarizing prepulse at holding potentials from -80 to -140 mV. Reaction of mutant R853C with 2-aminoethyl methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin. Our results are consistent with a voltage-sensor-trapping model in which the beta-scorpion toxin traps the IIS4 voltage sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-induced channel activation.


Asunto(s)
Activación del Canal Iónico/fisiología , Venenos de Escorpión/farmacología , Canales de Sodio/fisiología , Arginina/fisiología , Línea Celular , Electrofisiología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Membranas/efectos de los fármacos , Membranas/metabolismo , Mutagénesis Sitio-Dirigida/genética , Mutagénesis Sitio-Dirigida/fisiología , Técnicas de Placa-Clamp , Canales de Sodio/efectos de los fármacos
9.
J Cell Biol ; 154(2): 427-34, 2001 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-11470829

RESUMEN

Sequence homology predicts that the extracellular domain of the sodium channel beta1 subunit forms an immunoglobulin (Ig) fold and functions as a cell adhesion molecule. We show here that beta1 subunits associate with neurofascin, a neuronal cell adhesion molecule that plays a key role in the assembly of nodes of Ranvier. The first Ig-like domain and second fibronectin type III-like domain of neurofascin mediate the interaction with the extracellular Ig-like domain of beta1, confirming the proposed function of this domain as a cell adhesion molecule. beta1 subunits localize to nodes of Ranvier with neurofascin in sciatic nerve axons, and beta1 and neurofascin are associated as early as postnatal day 5, during the period that nodes of Ranvier are forming. This association of beta1 subunit extracellular domains with neurofascin in developing axons may facilitate recruitment and concentration of sodium channel complexes at nodes of Ranvier.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Inmunoglobulinas/genética , Factores de Crecimiento Nervioso/metabolismo , Subunidades de Proteína , Canales de Sodio/metabolismo , Envejecimiento/metabolismo , Animales , Axones/metabolismo , Sitios de Unión/fisiología , Encéfalo/metabolismo , Línea Celular , Fibronectinas/genética , Humanos , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Nódulos de Ranvier/metabolismo , Ratas , Nervio Ciático/metabolismo , Canales de Sodio/genética , Transfección
10.
Nat Rev Neurosci ; 2(6): 397-407, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11389473

RESUMEN

Voltage-gated Na+ channels set the threshold for action potential generation and are therefore good candidates to mediate forms of plasticity that affect the entire neuronal output. Although early studies led to the idea that Na+ channels were not subject to modulation, we now know that Na+ channel function is affected by phosphorylation. Furthermore, Na+ channel modulation is implicated in the control of input-output relationships in several types of neuron and seems to be involved in phenomena as varied as cocaine withdrawal, hyperalgesia and light adaptation. Here we review the available evidence for the regulation of Na+ channels by phosphorylation, its molecular mechanism, and the possible ways in which it affects neuronal function.


Asunto(s)
Potenciales de Acción/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Canales de Sodio/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/ultraestructura , Humanos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Fosforilación , Canales de Sodio/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
11.
Proc Natl Acad Sci U S A ; 98(8): 4699-704, 2001 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-11296298

RESUMEN

N-type and P/Q-type Ca(2+) channels are inhibited by neurotransmitters acting through G protein-coupled receptors in a membrane-delimited pathway involving Gbetagamma subunits. Inhibition is caused by a shift from an easily activated "willing" (W) state to a more-difficult-to-activate "reluctant" (R) state. This inhibition can be reversed by strong depolarization, resulting in prepulse facilitation, or by protein kinase C (PKC) phosphorylation. Comparison of regulation of N-type Ca(2+) channels containing Cav2.2a alpha(1) subunits and P/Q-type Ca(2+) channels containing Ca(v)2.1 alpha(1) subunits revealed substantial differences. In the absence of G protein modulation, Ca(v)2.1 channels containing Ca(v)beta subunits were tonically in the W state, whereas Ca(v)2.1 channels without beta subunits and Ca(v)2.2a channels with beta subunits were tonically in the R state. Both Ca(v)2.1 and Ca(v)2.2a channels could be shifted back toward the W state by strong depolarization or PKC phosphorylation. Our results show that the R state and its modulation by prepulse facilitation, PKC phosphorylation, and Ca(v)beta subunits are intrinsic properties of the Ca(2+) channel itself in the absence of G protein modulation. A common allosteric model of G protein modulation of Ca(2+)-channel activity incorporating an intrinsic equilibrium between the W and R states of the alpha(1) subunits and modulation of that equilibrium by G proteins, Ca(v)beta subunits, membrane depolarization, and phosphorylation by PKC accommodates our findings. Such regulation will modulate transmission at synapses that use N-type and P/Q-type Ca(2+) channels to initiate neurotransmitter release.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al GTP/metabolismo , Activación del Canal Iónico , Proteína Quinasa C/metabolismo , Regulación Alostérica
12.
Proc Natl Acad Sci U S A ; 98(8): 4705-9, 2001 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-11296299

RESUMEN

N-type Ca(2+) channels can be inhibited by neurotransmitter-induced release of G protein betagamma subunits. Two isoforms of Ca(v)2.2 alpha1 subunits of N-type calcium channels from rat brain (Ca(v)2.2a and Ca(v)2.2b; initially termed rbB-I and rbB-II) have different functional properties. Unmodulated Ca(v)2.2b channels are in an easily activated "willing" (W) state with fast activation kinetics and no prepulse facilitation. Activating G proteins shifts Ca(v)2.2b channels to a difficult to activate "reluctant" (R) state with slow activation kinetics; they can be returned to the W state by strong depolarization resulting in prepulse facilitation. This contrasts with Ca(v)2.2a channels, which are tonically in the R state and exhibit strong prepulse facilitation. Activating or inhibiting G proteins has no effect. Thus, the R state of Ca(v)2.2a and its reversal by prepulse facilitation are intrinsic to the channel and independent of G protein modulation. Mutating G177 in segment IS3 of Ca(v)2.2b to E as in Ca(v)2.2a converts Ca(v)2.2b tonically to the R state, insensitive to further G protein modulation. The converse substitution in Ca(v)2.2a, E177G, converts it to the W state and restores G protein modulation. We propose that negatively charged E177 in IS3 interacts with a positive charge in the IS4 voltage sensor when the channel is closed and produces the R state of Ca(v)2.2a by a voltage sensor-trapping mechanism. G protein betagamma subunits may produce reluctant channels by a similar molecular mechanism.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Activación del Canal Iónico , Sustitución de Aminoácidos , Canales de Calcio Tipo N/química , Línea Celular , Proteínas de Unión al GTP/metabolismo , Cinética , Isoformas de Proteínas/metabolismo
13.
Nature ; 409(6823): 988-9, 991, 2001 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-11234048
14.
J Neurophysiol ; 85(2): 900-11, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11160521

RESUMEN

We studied the magnitude and route(s) of Ca2+ flux from extra- to intracellular compartments during anoxia in adult rat optic nerve (RON), a central white matter tract, using Ca2+ sensitive microelectrodes to monitor extracellular [Ca2+] ([Ca2+]o). One hour of anoxia caused a rapid loss of the stimulus-evoked compound action potential (CAP), which partially recovered following re-oxygenation, indicating that irreversible injury had occurred. After an initial increase caused by extracellular space shrinkage, anoxia produced a sustained decrease of 0.42 mM (29%) in [Ca2+]o. We quantified the [Ca2+]o decrease as the area below baseline [Ca2+]o during anoxia and used this as a qualitative index of suspected Ca2+ influx. The degree of RON injury was predicted by the amount of Ca2+ leaving the extracellular space. Bepridil, 0 Na+ artificial cerebrospinal fluid or tetrodotoxin reduced suspected Ca2+ influx during anoxia implicating reversal of the Na+/Ca2+ exchanger as a route of Ca2+ influx. Diltiazem reduced suspected Ca2+ influx during anoxia, suggesting that Ca2+ influx via L-type Ca2+ channels is a route of toxic Ca2+ influx into axons during anoxia. Immunocytochemical staining was used to demonstrate and localize high-threshold Ca2+ channels. Only alpha1(C) and alpha1(D) subunits were detected, indicating that only L-type Ca2+ channels were present. Double labeling with anti-neurofilament antibodies or anti-glial fibrillary acidic protein antibodies localized L-type Ca2+ channels to axons and astrocytes.


Asunto(s)
Axones/metabolismo , Canales de Calcio Tipo L/metabolismo , Hipoxia/metabolismo , Hipoxia/patología , Nervio Óptico/metabolismo , Nervio Óptico/patología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Espacio Extracelular/metabolismo , Inmunohistoquímica , Concentración Osmolar , Ratas , Ratas Long-Evans , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Distribución Tisular
15.
J Biol Chem ; 276(1): 20-7, 2001 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-11024055

RESUMEN

Mutations of amino acid residues in the inner two-thirds of the S6 segment in domain III of the rat brain type IIA Na(+) channel (G1460A to I1473A) caused periodic positive and negative shifts in the voltage dependence of activation, consistent with an alpha-helix having one face on which mutations to alanine oppose activation. Mutations in the outer one-third of the IIIS6 segment all favored activation. Mutations in the inner half of IIIS6 had strong effects on the voltage dependence of inactivation from closed states without effect on open-state inactivation. Only three mutations had strong effects on block by local anesthetics and anticonvulsants. Mutations L1465A and I1469A decreased affinity of inactivated Na(+) channels up to 8-fold for the anticonvulsant lamotrigine and its congeners 227c89, 4030w92, and 619c89 as well as for the local anesthetic etidocaine. N1466A decreased affinity of inactivated Na(+) channels for the anticonvulsant 4030w92 and etidocaine by 3- and 8-fold, respectively, but had no effect on affinity of the other tested compounds. Leu-1465, Asn-1466, and Ile-1469 are located on one side of the IIIS6 helix, and mutation of each caused a positive shift in the voltage dependence of activation. Evidently, these amino acid residues face the lumen of the pore, contribute to formation of the high-affinity receptor site for pore-blocking drugs, and are involved in voltage-dependent activation and coupling to closed-state inactivation.


Asunto(s)
Anestésicos Locales/farmacología , Anticonvulsivantes/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canales de Sodio/química , Canales de Sodio/metabolismo , Sustitución de Aminoácidos/genética , Anestésicos Locales/metabolismo , Animales , Anticonvulsivantes/metabolismo , Sitios de Unión , Encéfalo , Electrofisiología , Etidocaína/metabolismo , Etidocaína/farmacología , Lamotrigina , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Piperazinas/metabolismo , Piperazinas/farmacología , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Pirimidinas/metabolismo , Pirimidinas/farmacología , Ratas , Bloqueadores de los Canales de Sodio , Canales de Sodio/genética , Termodinámica , Triazinas/metabolismo , Triazinas/farmacología , Xenopus laevis
16.
Mol Cell Neurosci ; 18(5): 570-80, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11922146

RESUMEN

Brain sodium channels are complexes of a pore-forming alpha subunit with auxiliary beta subunits, which are transmembrane proteins that modulate alpha subunit function. The newly cloned beta3 subunit is shown to be expressed broadly in neurons in the central and peripheral nervous systems, but not in glia and most nonneuronal cells. Beta1, beta2, and beta3 subunits are coexpressed in many neuronal cell types, but are differentially expressed in ventromedial nucleus of the thalamus, brain stem nuclei, cerebellar Purkinje cells, and dorsal root ganglion cells. Coexpression of beta1, beta2, and beta3 subunits with Na(v)1.2a alpha subunits in the tsA-201 subclone of HEK293 cells shifts sodium channel activation and inactivation to more positive membrane potentials. However, beta3 is unique in causing increased persistent sodium currents. Because persistent sodium currents are thought to amplify summation of synaptic inputs, expression of this subunit would increase the excitability of specific groups of neurons to all of their inputs.


Asunto(s)
Membrana Celular/metabolismo , Sistema Nervioso/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Potenciales de la Membrana/fisiología , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/metabolismo , Estructura Terciaria de Proteína/fisiología , ARN Mensajero/metabolismo , Ratas , Canales de Sodio/genética
17.
Mol Pharmacol ; 58(6): 1264-70, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11093762

RESUMEN

The benzothiazepine diltiazem blocks ionic current through L-type Ca(2+) channels, as do the dihydropyridines (DHPs) and phenylalkylamines (PAs), but it has unique properties that distinguish it from these other drug classes. Wild-type L-type channels containing alpha(1CII) subunits, wild-type P/Q-type channels containing alpha(1A) subunits, and mutants of both channel types were transiently expressed in tsA-201 cells with beta(1B) and alpha(2)delta subunits. Whole-cell, voltage-clamp recordings showed that diltiazem blocks L-type Ca(2+) channels approximately 5-fold more potently than it does P/Q-type channels. Diltiazem blocked a mutant P/Q-type channel containing nine amino acid changes that made it highly sensitive to DHPs, with the same potency as L-type channels. Thus, amino acids specific to the L-type channel that confer DHP sensitivity in an alpha(1A) background also increase sensitivity to diltiazem. Analysis of single amino acid mutations in domains IIIS6 and IVS6 of alpha(1CII) subunits confirmed the role of these L-type-specific amino acid residues in diltiazem block, and also indicated that Y1152 of alpha(1CII), an amino acid critical to both DHP and PA block, does not play a role in diltiazem block. Furthermore, T1039 and Y1043 in domain IIIS5, which are both critical for DHP block, are not involved in block by diltiazem. Conversely, three amino acid residues (I1150, M1160, and I1460) contribute to diltiazem block but have not been shown to affect DHP or PA block. Thus, binding of diltiazem to L-type Ca(2+) channels requires residues that overlap those that are critical for DHP and PA block as well as residues unique to diltiazem.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/fisiología , Diltiazem/farmacología , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/genética , Células Cultivadas , Secuencia Conservada , Electrofisiología , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Pruebas de Mutagenicidad , Conformación Proteica , Homología de Secuencia de Aminoácido
18.
Biochimie ; 82(9-10): 883-92, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11086218

RESUMEN

Voltage-gated sodium channels are the molecular targets for a broad range of neurotoxins that act at six or more distinct receptor sites on the channel protein. These toxins fall into three groups. Both hydrophilic low molecular mass toxins and larger polypeptide toxins physically block the pore and prevent sodium conductance. Alkaloid toxins and related lipid-soluble toxins alter voltage-dependent gating of sodium channels via an allosteric mechanism through binding to intramembranous receptor sites. In contrast, polypeptide toxins alter channel gating by voltage sensor trapping through binding to extracellular receptor sites. The results of recent studies that define the receptor sites and mechanisms of action of these diverse toxins are reviewed here.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Neurotoxinas/farmacología , Canales de Sodio/efectos de los fármacos , Animales , Sitios de Unión , Activación del Canal Iónico/fisiología , Estructura Secundaria de Proteína , Canales de Sodio/fisiología
19.
Annu Rev Cell Dev Biol ; 16: 521-55, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11031246

RESUMEN

Voltage-gated Ca(2+) channels mediate Ca(2+) entry into cells in response to membrane depolarization. Electrophysiological studies reveal different Ca(2+) currents designated L-, N-, P-, Q-, R-, and T-type. The high-voltage-activated Ca(2+) channels that have been characterized biochemically are complexes of a pore-forming alpha1 subunit of approximately 190-250 kDa; a transmembrane, disulfide-linked complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit. Ten alpha1 subunits, four alpha2delta complexes, four beta subunits, and two gamma subunits are known. The Cav1 family of alpha1 subunits conduct L-type Ca(2+) currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation pathways. The Cav2 family of alpha1 subunits conduct N-type, P/Q-type, and R-type Ca(2+) currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation. The Cav3 family of alpha1 subunits conduct T-type Ca(2+) currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca(2+) current types. The distinct structures and patterns of regulation of these three families of Ca(2+) channels provide a flexible array of Ca(2+) entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca(2+) entry by second messenger pathways and interacting proteins.


Asunto(s)
Canales de Calcio/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/farmacología , Canales de Calcio/fisiología , Electrofisiología , Proteínas de Unión al GTP/metabolismo , Humanos , Líquido Intracelular/metabolismo , Fosforilación , Proteínas/metabolismo
20.
Proc Natl Acad Sci U S A ; 97(22): 12334-8, 2000 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-11035786

RESUMEN

We have investigated the mechanism underlying the modulation of the cardiac L-type Ca(2+) current by protein kinase C (PKC). Using the patch-clamp technique, we found that PKC activation by 4-alpha-phorbol 12-myristate 13-acetate (PMA) or rac-1-oleyl-2-acetylglycerol (OAG) caused a substantial reduction in Ba(2+) current through Ca(v)1.2 channels composed of alpha(1)1.2, beta(1b), and alpha(2)delta(1) subunits expressed in tsA-201 cells. In contrast, Ba(2+) current through a cloned brain isoform of the Ca(v)1.2 channel (rbC-II) was unaffected by PKC activation. Two potential sites of PKC phosphorylation are present at positions 27 and 31 in the cardiac form of Ca(v)1.2, but not in the brain form. Deletion of N-terminal residues 2-46 prevented PKC inhibition. Conversion of the threonines at positions 27 and 31 to alanine also abolished the PKC sensitivity of Ca(v)1.2. Mutant Ca(v)1.2 channels in which the threonines were converted singly to alanines were also insensitive to PKC modulation, suggesting that phosphorylation of both residues is required for PKC-dependent modulation. Consistent with this, mutating each of the threonines individually to aspartate in separate mutants restored the PKC sensitivity of Ca(v)1.2, indicating that a change in net charge by phosphorylation of both sites is responsible for inhibition. Our results define the molecular basis for inhibition of cardiac Ca(v)1.2 channels by the PKC pathway.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Miocardio/metabolismo , Proteína Quinasa C/metabolismo , Secuencia de Aminoácidos , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Línea Celular , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Mutagénesis , Fosforilación , Homología de Secuencia de Aminoácido , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...