Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117203

RESUMEN

We present the development of a flexible tape-drive target system to generate and control secondary high-intensity laser-plasma sources. Its adjustable design permits the generation of relativistic MeV particles and x rays at high-intensity (i.e., ≥1 × 1018 W cm-2) laser facilities, at high repetition rates (>1 Hz). The compact and robust structure shows good mechanical stability and a high target placement accuracy (<4 µm RMS). Its compact and flexible design allows for mounting in both the horizontal and vertical planes, which makes it practical for use in cluttered laser-plasma experimental setups. The design permits ∼170° of access on the laser-driver side and 120° of diagnostic access at the rear. A range of adapted apertures have been designed and tested to be easily implemented to the targetry system. The design and performance testing of the tape-drive system in the context of two experiments performed at the COMET laser facility at the Lawrence Livermore National Laboratory and at the Advanced Lasers and Extreme Photonics (ALEPH) facility at Colorado State University are discussed. Experimental data showing that the designed prototype is also able to both generate and focus high-intensity laser-driven protons at high repetition rates are also presented.

2.
Rev Sci Instrum ; 86(4): 043502, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25933857

RESUMEN

Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...