Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 199: 106564, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876323

RESUMEN

Biallelic variants in the SPG11 gene account for the most common form of autosomal recessive hereditary spastic paraplegia characterized by motor and cognitive impairment, with currently no therapeutic option. We previously observed in a Spg11 knockout mouse that neurodegeneration is associated with accumulation of gangliosides in lysosomes. To test whether a substrate reduction therapy could be a therapeutic option, we downregulated the key enzyme involved in ganglioside biosynthesis using an AAV-PHP.eB viral vector expressing a miRNA targeting St3gal5. Downregulation of St3gal5 in Spg11 knockout mice prevented the accumulation of gangliosides, delayed the onset of motor and cognitive symptoms, and prevented the upregulation of serum levels of neurofilament light chain, a biomarker widely used in neurodegenerative diseases. Importantly, similar results were observed when Spg11 knockout mice were administrated venglustat, a pharmacological inhibitor of glucosylceramide synthase expected to decrease ganglioside synthesis. Downregulation of St3gal5 or venglustat administration in Spg11 knockout mice strongly decreased the formation of axonal spheroids, previously associated with impaired trafficking. Venglustat had similar effect on cultured human SPG11 neurons. In conclusion, this work identifies the first disease-modifying therapeutic strategy in SPG11, and provides data supporting its relevance for therapeutic testing in SPG11 patients.

2.
PLoS Biol ; 21(10): e3002337, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37871017

RESUMEN

The endoplasmic reticulum (ER) forms contacts with the lysosomal compartment, regulating lysosome positioning and motility. The movements of lysosomes are controlled by the attachment of molecular motors to their surface. However, the molecular mechanisms by which ER controls lysosome dynamics are still elusive. Here, using mouse brain extracts and mouse embryonic fibroblasts, we demonstrate that spatacsin is an ER-resident protein regulating the formation of tubular lysosomes, which are highly dynamic. Screening for spatacsin partners required for tubular lysosome formation showed spatacsin to act by regulating protein degradation. We demonstrate that spatacsin promotes the degradation of its partner AP5Z1, which regulates the relative amount of spastizin and AP5Z1 at lysosomes. Spastizin and AP5Z1 contribute to regulate tubular lysosome formation, as well as their trafficking by interacting with anterograde and retrograde motor proteins, kinesin KIF13A and dynein/dynactin subunit p150Glued, respectively. Ultimately, investigations in polarized mouse cortical neurons in culture demonstrated that spatacsin-regulated degradation of AP5Z1 controls the directionality of lysosomes trafficking. Collectively, our results identify spatacsin as a protein regulating the directionality of lysosome trafficking.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Fibroblastos , Proteínas , Animales , Ratones , Dineínas/metabolismo , Fibroblastos/metabolismo , Lisosomas/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo
3.
Exp Neurol ; 355: 114119, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35605667

RESUMEN

Pharmacological targeting of neuroinflammation in distinct models of genetically mediated disorders of the central nervous system (CNS) has been shown to attenuate disease outcome significantly. These include mouse models mimicking distinct subtypes of neuronal ceroid lipofuscinoses (NCL, CLN diseases) as well as hereditary spastic paraplegia type 2 (HSP/SPG2). We here show in a model of another, complicated HSP form (SPG11) that there is neuroinflammation in distinct compartments of the diseased CNS. Using a proof-of-principle experiment, we provide evidence that genetically targeting the adaptive immune system dampens disease progression including gait disturbance, demonstrating a pathogenic impact of neuroinflammation. Translating these studies into a clinically applicable approach, we show that the established immunomodulators fingolimod and teriflunomide significantly attenuate the neurodegenerative phenotype and improve gait performance in the SPG11 model, even when applied relatively late during disease progression. Particularly abnormalities in gait coordination, representing ataxia, could be attenuated, while features indicative of reduced strength during walking did not respond to treatment. Our study identifies neuroinflammation by the adaptive immune system as a robust and targetable disease amplifier in a mouse model of SPG11 and may thus pave the way for a translational approach in humans implicating approved immunomodulators.


Asunto(s)
Paraplejía Espástica Hereditaria , Animales , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Ratones , Mutación , Proteínas/genética , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Linfocitos T/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...