Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810321

RESUMEN

The synthesis of transition metal oxynitrides is complicated by extreme reaction conditions such as high temperatures and/or high pressures. Here, we show an unprecedented solution-based synthesis of narrowly dispersed titanium oxynitride nanoparticles of cubic shape and average size of 65 nm. Their synthesis is performed by using titanium tetrafluoride and lithium nitride as precursors alongside trioctylphosphine oxide (TOPO) and cetrimonium bromide (CTAB) as stabilizers at temperatures as low as 250 °C. The obtained nanoparticles are characterized in terms of their shape and optical properties, as well as their crystalline rock-salt structure, as confirmed by XRD and HRTEM analysis. We also determine the composition and nitrogen content of the synthesized particles using XPS and EELS. Finally, we investigate the applicability of our titanium oxynitride nanoparticles by compounding them into carbon fiber electrodes to showcase their applicability in energy storage devices. Electrodes with titanium oxynitride nanoparticles exhibit increased capacity compared to the pure carbon material.

2.
Langmuir ; 35(32): 10424-10434, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31306025

RESUMEN

The development of new contrast agents (CAs) for magnetic resonance imaging (MRI) is of high interest, especially because of the increased concerns of patient safety and quick clearance of clinically used gadolinium and iron oxide-based CAs, respectively. Here, a two-step synthesis of superparamagnetic water-soluble iron platinum (FePt) nanoparticles (NPs) with core sizes between 2 and 8 nm for use as CAs in MRI is reported. First, wet-chemical organometallic NPs are synthesized by thermal decomposition in the presence of stabilizing oleic acid and oleylamine. Second, the hydrophobic NPs are coated with an amphiphilic polymer and transferred into aqueous media. Their magnetization values and relaxation rates exceed those published for CAs already used for clinical application. Their saturation magnetization increases with the core size to approximately 82 A·m2/kgFe. For 8 nm NPs, the T2 relaxivity of approximately 221 (mM·s)-1 is 5 times larger than that for the ferumoxides, and for 6 nm NPs, the T1 relaxivity of approximately 12 (mM·s)-1 is slightly higher than that of ultrasmall gadolinium oxide NPs. The 6 nm FePt NPs are identified as excellent CAs for both T1 and T2 imaging. Most importantly, because of their coating, significantly low cytotoxicity is achieved. FePt NPs prove to be a promising alternative to gadolinium and iron oxide NPs showing high-quality CA characteristics for both T1- and T2-weighted images.

3.
Chem Sci ; 10(6): 1844-1856, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30842853

RESUMEN

Controlling and understanding the electrochemical properties of electroactive polymeric colloids is a highly topical but still a rather unexplored field of research. This is especially true when considering more complex particle architectures like stimuli-responsive microgels, which would entail different kinetic constraints for charge transport within one particle. We synthesize and electrochemically address dual stimuli responsive core-shell microgels, where the temperature-responsiveness modulates not only the internal structure, but also the microgel electroactivity both on an internal and on a global scale. In detail, a facile one-step precipitation polymerization results in architecturally advanced poly(N-isopropylacrylamide-co-vinylferrocene) P(NIPAM-co-VFc) microgels with a ferrocene (Fc)-enriched (collapsed/hard) core and a NIPAM-rich shell. While the remaining Fc units in the shell are electrochemically accessible, the electrochemical activity of Fc in the core is limited due to the restricted mobility of redox active sites and therefore restricted electron transfer in the compact core domain. Still, prolonged electrochemical action and/or chemical oxidation enable a reversible adjustment of the internal microgel structure from core-shell microgels with a dense core to completely oxidized microgels with a highly swollen core and a denser corona. The combination of thermo-sensitive and redox-responsive units being part of the network allows for efficient amplification of the redox response on the overall microgel dimension, which is mainly governed by the shell. Further, it allows for an electrochemical switching of polarity (hydrophilicity/hydrophobicity) of the microgel, enabling an electrochemically triggered uptake and release of active guest molecules. Hence, bactericidal drugs can be released to effectively kill bacteria. In addition, good biocompatibility of the microgels in cell tests suggests suitability of the new microgel system for future biomedical applications.

4.
ACS Macro Lett ; 6(7): 711-715, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35650875

RESUMEN

A time-saving phase-diagram screening is introduced for the self-assembly of miktoarm star polymers with different arm numbers for the insoluble part. Agreeing with theory, all conventional micellar morphologies (spherical star-like micelles, cylindrical micelles and vesicles) can be accessed by adjusting the average arm number when blending miktoarm stars with diblock copolymers (at constant arm/block lengths). Additionally, a rare clustered vesicle phase is detected. Hence, this approach permits an easy tuning of the equilibrium morphology and the size of the solvophobic domain. Such screening by scattering, ultracentrifugation, and electron microscopy techniques assists the targeted synthesis of miktoarm stars with a well-defined arm number, aimed at the morphology control of the nanostructures without blending. Specifically, we demonstrate a systematic variation of all classical micellar morphologies based on interpolyelectrolyte complexes (IPECs), consisting of a water-insoluble part formed by electrostatically coupled poly(styrenesulfonate) chains/quaternized poly(2-(dimethylamino)ethyl methacrylate) blocks, being stabilized by hydrophilic poly(ethylene oxide) blocks.

5.
Nano Lett ; 16(11): 7295-7301, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27701865

RESUMEN

Compartmentalization in soft matter is important for segregating and coordinating chemical reactions, sequestering (re)active components, and integrating multifunctionality. Advances depend crucially on quantitative 3D visualization in situ with high spatiotemporal resolution. Here, we show the direct visualization of different compartments within adaptive microgels using a combination of in situ electron and super-resolved fluorescence microscopy. We unravel new levels of structural details and address the challenge of reconstructing 3D information from 2D projections for nonuniform soft matter as opposed to monodisperse proteins. Moreover, we visualize the thermally induced shrinkage of responsive core-shell microgels live in water. This strategy opens doors for systematic in situ studies of soft matter systems and their application as smart materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...