Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36649053

RESUMEN

The rod-shaped adult cardiomyocyte (CM) harbors a unique architecture of its lateral surface with periodic crests, relying on the presence of subsarcolemmal mitochondria (SSM) with unknown role. Here, we investigated the development and functional role of CM crests during the postnatal period. We found in rodents that CM crest maturation occurs late between postnatal day 20 (P20) and P60 through both SSM biogenesis, swelling and crest-crest lateral interactions between adjacent CM, promoting tissue compaction. At the functional level, we showed that the P20-P60 period is dedicated to the improvement of relaxation. Interestingly, crest maturation specifically contributes to an atypical CM hypertrophy of its short axis, without myofibril addition, but relying on CM lateral stretching. Mechanistically, using constitutive and conditional CM-specific knock-out mice, we identified ephrin-B1, a lateral membrane stabilizer, as a molecular determinant of P20-P60 crest maturation, governing both the CM lateral stretch and the diastolic function, thus highly suggesting a link between crest maturity and diastole. Remarkably, while young adult CM-specific Efnb1 KO mice essentially exhibit an impairment of the ventricular diastole with preserved ejection fraction and exercise intolerance, they progressively switch toward systolic heart failure with 100% KO mice dying after 13 months, indicative of a critical role of CM-ephrin-B1 in the adult heart function. This study highlights the molecular determinants and the biological implication of a new late P20-P60 postnatal developmental stage of the heart in rodents during which, in part, ephrin-B1 specifically regulates the maturation of the CM surface crests and of the diastolic function.


Asunto(s)
Efrina-B1 , Miocitos Cardíacos , Animales , Ratones , Diástole , Miofibrillas
2.
Cardiovasc Res ; 115(6): 1078-1091, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30329023

RESUMEN

AIMS: This study explored the lateral crest structures of adult cardiomyocytes (CMs) within healthy and diseased cardiac tissue. METHODS AND RESULTS: Using high-resolution electron and atomic force microscopy, we performed an exhaustive quantitative analysis of the three-dimensional (3D) structure of the CM lateral surface in different cardiac compartments from various mammalian species (mouse, rat, cow, and human) and determined the technical pitfalls that limit its observation. Although crests were observed in nearly all CMs from all heart compartments in all species, we showed that their heights, dictated by the subsarcolemmal mitochondria number, substantially differ between compartments from one species to another and tightly correlate with the sarcomere length. Differences in crest heights also exist between species; for example, the similar cardiac compartments in cows and humans exhibit higher crests than rodents. Unexpectedly, we found that lateral surface crests establish tight junctional contacts with crests from neighbouring CMs. Consistently, super-resolution SIM or STED-based immunofluorescence imaging of the cardiac tissue revealed intermittent claudin-5-claudin-5 interactions in trans via their extracellular part and crossing the basement membrane. Finally, we found a loss of crest structures and crest-crest contacts in diseased human CMs and in an experimental mouse model of left ventricle barometric overload. CONCLUSION: Overall, these results provide the first evidence for the existence of differential CM surface crests in the cardiac tissue as well as the existence of CM-CM direct physical contacts at their lateral face through crest-crest interactions. We propose a model in which this specific 3D organization of the CM lateral membrane ensures the myofibril/myofiber alignment and the overall cardiac tissue cohesion. A potential role in the control of sarcomere relaxation and of diastolic ventricular dysfunction is also discussed. Whether the loss of CM surface crests constitutes an initial and common event leading to the CM degeneration and the setting of heart failure will need further investigation.


Asunto(s)
Membrana Celular/ultraestructura , Miocitos Cardíacos/ultraestructura , Anciano , Anciano de 80 o más Años , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Bovinos , Membrana Celular/metabolismo , Claudina-5/metabolismo , Microscopía por Crioelectrón , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/metabolismo , Ratas Wistar , Sarcómeros/ultraestructura , Especificidad de la Especie , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura
3.
J Struct Biol ; 198(1): 28-37, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28263874

RESUMEN

PeakForce Quantitative Nanomechanical Mapping (PeakForce QNM) multiparametric AFM mode was adapted to qualitative and quantitative study of the lateral membrane of cardiomyocytes (CMs), extending this powerful mode to the study of soft cells. On living CM, PeakForce QNM depicted the crests and hollows periodic alternation of cell surface architecture previously described using AFM Force Volume (FV) mode. PeakForce QNM analysis provided better resolution in terms of pixel number compared to FV mode and reduced acquisition time, thus limiting the consequences of spontaneous living adult CM dedifferentiation once isolated from the cardiac tissue. PeakForce QNM mode on fixed CMs clearly visualized subsarcolemmal mitochondria (SSM) and their loss following formamide treatment, concomitant with the interfibrillar mitochondria climbing up and forming heaps at the cell surface. Interestingly, formamide-promoted SSM loss allowed visualization of the sarcomeric apparatus ultrastructure below the plasma membrane. High PeakForce QNM resolution led to better contrasted mechanical maps than FV mode and provided correlation between adhesion, dissipation, mechanical and topographical maps. Modified hydrophobic AFM tip enhanced contrast on adhesion and dissipation maps and suggested that CM surface crests and hollows exhibit distinct chemical properties. Finally, two-dimensional Fast Fourier Transform to objectively quantify AFM maps allowed characterization of periodicity of both sarcomeric Z-line and M-band. Overall, this study validated PeakForce QNM as a valuable and innovative mode for the exploration of living and fixed CMs. In the future, it could be applied to depict cell membrane architectural, mechanical and chemical defects as well as sarcomeric abnormalities associated with cardiac diseases.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Miocitos Cardíacos/ultraestructura , Animales , Membrana Celular , Formamidas/farmacología , Ratones , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica/instrumentación , Mitocondrias/efectos de los fármacos , Sarcómeros/ultraestructura , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...